Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In previous studies, we showed that docosahexaenoic acid (DHA) ingestion enhanced the susceptibility of rat liver and kidney to lipid peroxidation, but did not increase lipid peroxide formation to the level expected from the relative peroxidizability index (P-index) of the total tissue lipids. The results suggested the existence of some suppressive mechanisms against DHA-induced tissue lipid peroxide formation, as increased tissue ascorbic acid (AsA) and glutathione levels were observed. Therefore, we focused initially on the role of AsA for the suppressive mechanisms. For this purpose, we examined the influence of different levels of dietary AsA (low, moderate, high and excessive levels were 100, 300 (control), 600 and 3000 mg/kg diet respectively) on the tissue lipid peroxide and antioxidant levels in AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats fed DHA (6.4 % total energy) for 32 or 33 d. Diets were pair-fed to the DHA- and 100 mg AsA/kg diet-fed group. We found that the lipid peroxide concentrations of liver and kidney in the DHA-fed group receiving 100 mg AsA/kg diet were significantly higher or tended to be higher than those of the DHA-fed groups with AsA at more than the usual control level of 300 mg/kg diet. Contrary to this, the liver alpha-tocopherol concentration was significantly lower or tended to be lower in the DHA and 100 mg AsA/kg diet-fed group than those of the other DHA-fed groups. However, tissue lipid peroxide formation and alpha-tocopherol consumption were not suppressed further, even after animals received higher doses of AsA. The present results suggest that higher than normal concentrations of tissue AsA are not necessarily associated with the suppressive mechanisms against dietary DHA-induced tissue lipid peroxide formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1079/bjn2003906 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!