Proteomic approaches to the diagnosis, treatment, and monitoring of cancer.

Adv Exp Med Biol

FDA/NCI Clinical Proteomics Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.

Published: February 2004

The field of proteomics holds promise for the discovery of new biomarkers for the early detection and diagnosis of disease, molecular targets for therapy and markers for therapeutic efficacy and toxicity. A variety of proteomics approaches may be used to address these goals. Two-dimensional gel electrophoresis (2D-PAGE) is the cornerstone of many discovery-based proteomics studies. Technologies such as laser capture microdissection (LCM) and highly sensitive MS methods are currently being used together to identify greater numbers of lower abundance proteins that are differentially expressed between defined cell populations. Newer technologies such as reverse phase protein arrays will enable the identification and profiling of target pathways in small biopsy specimens. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) analysis enables the high throughput characterization of lysates from very few tumor cells or body fluids and may be best suited for diagnosis and monitoring of disease. Such technologies are expected to supplement our arsenal of mRNA-based assays, and we believe that in the future, entire cellular networks and not just a single deregulated protein will be the target of therapeutics and that we will soon be able to monitor the status of these pathways in diseased cells before, during and after therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4615-0081-0_7DOI Listing

Publication Analysis

Top Keywords

proteomic approaches
4
approaches diagnosis
4
diagnosis treatment
4
treatment monitoring
4
monitoring cancer
4
cancer field
4
field proteomics
4
proteomics holds
4
holds promise
4
promise discovery
4

Similar Publications

Pulmonary endothelial cell (EC) activation is a key factor in acute respiratory distress syndrome (ARDS). In sepsis, increased glycolysis leads to lactate buildup, which induces lysine lactylation (Kla) on histones and other proteins. However, the role of protein lactylation in EC dysfunction during sepsis-induced ARDS remains unclear.

View Article and Find Full Text PDF

Antibody and cell-based therapeutics targeting cell surface receptors have emerged as a major class of immune therapeutics for treating cancer. However, the number of cell surface targets for cancer immunotherapy remains limited. Glypican-3 (GPC3) is a cell surface proteoglycan and an oncofetal antigen.

View Article and Find Full Text PDF

Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) encompasses a spectrum of histological conditions ranging from simple steatosis to fibrosing steatohepatitis, and is a risk factor for cardiovascular diseases (CVD). While oxidised apolipoproteins A and B have been linked to obesity and CVD, the association between other oxidised apolipoproteins and MASLD is yet to be established. To fill this gap, we characterised the circulating serum peptidome of patients with MASLD.

View Article and Find Full Text PDF

Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.

View Article and Find Full Text PDF

The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!