Nanowires of magnetic metals (Fe, Co, Ho, Gd) have been synthesized inside the hollow interiors of single-wall carbon nanotubes (SWNTs) by filling SWNTs with precursor metal chlorides and subsequent reduction. SWNTs have been filled by either the melt-phase sealed-tube reaction or a solution-phase method. Among the metal chlorides investigated in this study, HoCl3 and GdCl3 filled the SWNTs to a significantly higher extent. The nanowires have been imaged by transmission electron microscopy (TEM), high-resolution transmission electron microscopy, and scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy carried out in conjunction with TEM and STEM confirmed the presence of metal chloride and metal nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2003.181 | DOI Listing |
Virol J
January 2025
Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Formerly with Spark Therapeutics, Inc., 3025 Market Street, Philadelphia, PA, 19104.
Transmission electron microscopy has become a standard characterization tool for adeno-associated virus-based gene therapy products. However, cost and expertise requirements place in-house traditional transmission electron microscope systems out of reach for many companies in the field. Recently developed low voltage electron microscopes can fulfill many of the needs for adeno-associated virus characterization at a fraction of the cost.
View Article and Find Full Text PDFTalanta
January 2025
Ampere - Laboratório de Plataformas Eletroquímicas. Departamento de Química, Universidade Federal de Santa Catarina, 880400-900, Florianópolis, SC, Brazil. Electronic address:
Nicotine (NIC) detection is vital for monitoring its presence in various environments, including tobacco products, electronic cigarettes, and clinical samples; NIC's widespread use and health implications necessitate precise and reliable detection methods as it is linked to diseases such as lung cancer and vascular disorders. In this study, we developed and characterized Au tadpole-like nanostructures immobilized onto titanium oxide (TiO) to provide a cost-effective and sensitive NIC detection material. The comprehensive characterization of the composite used transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), showing the robustness of the synthesis.
View Article and Find Full Text PDFSci Rep
January 2025
Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, 33098, Paderborn, Germany.
Measurements in general are limited in accuracy by the presence of noise. This also holds true for highly sophisticated scintillation-based CCD cameras, as they are used in medical applications, astronomy or transmission electron microscopy. Further, signals measured with pixelated detectors are convolved with the inherent detector point spread function.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545-El-Shatby, Alexandria, Egypt.
The increasing demand for sustainable and eco-friendly pest control methods has led to a growing interest in the development of novel, plant-based pesticides. In this study, we investigated the potential of nano-emulsions containing plant oils (Portulaca oleracea, Raphanus sativus, and Rosmarinus officinalis) as a new approach for controlling three major pests: Aphis gossypii, Spodoptera littoralis, and Tetranychus urticae. Using ultrasonication, we prepared stable and uniform nano-emulsions characterized by thermodynamic properties, dynamic light scattering (DLS), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!