Endoribonuclease RNase E has a central role in both processing and decay of RNA in Escherichia coli, and apparently in many other organisms, where RNase E homologs were identified or their existence has been predicted from genomic data. Although the biochemical properties of this enzyme have been already studied for many years, the substrate specificity of RNase E is still poorly characterized. Here, I have described a novel oligonucleotide-based assay to identify specific sequence determinants that either facilitate or impede the recognition and cleavage of RNA by the catalytic domain of the enzyme. The knowledge of these determinants is crucial for understanding the nature of RNA-protein interactions that control the specificity and efficiency of RNase E cleavage and opens new perspectives for further studies of this multi-domain protein. Moreover, the simplicity and efficiency of the proposed assay suggest that it can be a valuable tool not only for the characterization of RNase E homologs but also for the analysis of other site-specific nucleases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC169975 | PMC |
http://dx.doi.org/10.1093/nar/gkg690 | DOI Listing |
Biotechnol Bioeng
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Electronic address:
Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated.
View Article and Find Full Text PDFPlant Physiol
January 2025
Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, Herrenhäuser Str. 2, 30419 Hannover, Germany.
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!