Kaposi sarcoma (KS), the most common neoplasm in patients with AIDS, typically presents with multiple skin lesions characterized by "spindle cells," the vast majority of which are infected with KSHV (Kaposi sarcoma herpes virus, also named HHV-8). In patients with AIDS, the presence of cell-associated KSHV DNA in blood is predictive of subsequent KS development, but the mechanisms by which circulating KSHV-infected cells contribute to AIDS-KS pathogenesis are unclear. Here, we show that the chemokine stromal-derived factor-1 (SDF-1), which is constitutively expressed by skin capillary endothelium and displayed on the endothelial cell surface in association with heparan sulfate, can trigger specific arrest of KSHV-infected cells under physiologic shear flow conditions. Moreover, in the presence of soluble SDF-1 gradients, SDF-1 expressed on the endothelial barrier can promote transendothelial migration of KSHV-infected cells. By triggering specific adhesion of circulating KSHV-infected cells and favoring their entry into the extravascular cutaneous space, endothelial cell-associated SDF-1 in cutaneous capillaries may dictate the preferential occurrence of KS in the skin.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2003-02-0641DOI Listing

Publication Analysis

Top Keywords

kshv-infected cells
16
kaposi sarcoma
12
stromal-derived factor-1
8
patients aids
8
circulating kshv-infected
8
selective expression
4
expression stromal-derived
4
factor-1 capillary
4
capillary vascular
4
vascular endothelium
4

Similar Publications

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 pandemic, has resulted in over 7 million confirmed deaths. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal outcomes. Therefore, it is essential to investigate the impact of COVID-19 on pre-existing conditions in patients, such as cancer and other infectious diseases.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an RNA-binding protein ORF57 in lytic infection. Using an optimized CLIP-seq in this report, we identified ORF57-bound transcripts from 544 host protein-coding genes. By comparing with the RNA-seq profiles from BCBL-1 cells with latent and lytic KSHV infection and from HEK293T cells with and without ORF57 expression, we identified FOS RNA as one of the major ORF57-specific RNA targets.

View Article and Find Full Text PDF

The Kaposi sarcoma herpesvirus control of monocytes, macrophages, and the tumour microenvironment.

Virology

January 2025

The Institute of Quantitative Biology, Biochemistry and Biotechnology (IQB3), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK; The Institute of Infection and Immunology Research (IIIR), School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK. Electronic address:

Kaposi sarcoma herpesvirus (KSHV) is an oncogenic DNA virus associated with various malignancies, including tumours like Kaposi sarcoma and Primary effusion lymphoma. Recently, the importance of the tumour microenvironment in KSHV-associated tumours is being studied. New studies utilizing human primary cells, co-culture experiments with KSHV-infected cells, and modern techniques like time-resolved single cell analysis, have significantly advanced the understanding of KSHV interactions with monocytes and macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • * The research analyzed changes in lymphocyte distributions in KS tissues through a computational method that compares transcriptome data with immune cell RNA expression patterns.
  • * Findings indicated that cytokines and chemokines from KSHV-infected cells could influence the tissue environment, promoting the differentiation of macrophages to a proinflammatory state in culture assays.
View Article and Find Full Text PDF

The Endoplasmic Reticulum (ER)-resident HSP70 chaperone BiP (HSPA5) plays a crucial role in maintaining and restoring protein folding homeostasis in the ER. BiP's function is often dysregulated in cancer and virus-infected cells, conferring pro-oncogenic and pro-viral advantages. We explored BiP's functions during infection by the Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic gamma-herpesvirus associated with cancers of immunocompromised patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!