The effect of agmatine, an endogenous polyamine metabolite, on seizure susceptibility was investigated in mice. Acute intraperitoneal administration of agmatine (5, 10, 20, 40 mg/kg) had a significant and dose-dependent inhibitory effect on pentylenetetrazole (PTZ)-induced seizures. The peak of this anticonvulsant effect was 45 min after agmatine administration. We further investigated the possible involvement of the alpha(2)-adrenoceptors and L-arginine/NO pathway in this effect of agmatine. The alpha(2)-adrenoceptor antagonist, yohimbine (0.5-2 mg/kg), induced a dose-dependent blockade of the anticonvulsant effect of agmatine. The nitric oxide synthase (NOS) substrate, L-arginine (60 mg/kg), inhibited the anticonvulsant property of agmatine and this effect was significantly reversed by NOS inhibitor N(G)-nitro-L-arginine (L-NAME, 30 mg/kg), implying an NO-dependent mechanism for L-arginine effect. We further examined a possible additive effect between agmatine (1 or 5 mg/kg) and L-NAME (10 mg/kg). The combination of L-NAME (10 mg/kg) with agmatine (5 but not 1 mg/kg) induced a significantly higher level of seizure protection as compared with each drug alone. Moreover, a combination of lower doses of yohimbine (0.5 mg/kg) and L-arginine (30 mg/kg) also significantly decreased the anticonvulsant effect of agmatine. In conclusion, the present data suggest that agmatine may be of potential use in seizure treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0028-3908(03)00199-0 | DOI Listing |
Brain Behav
January 2025
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
Purpose: Essential tremor (ET) is a prevalent movement disorder, yet current therapeutic options remain limited. Emerging evidence implicates leucine-rich repeat and immunoglobulin-like domain-containing protein (Lingo-1) and neuroinflammation in the pathophysiology of ET. This study aimed to investigate whether agmatine, a biogenic amine neuromodulator attenuates tremors and modulates the expression of Lingo-1 and proinflammatory markers in a rodent model of ET.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
Drug Dev Res
November 2024
Laboratorio de Farmacología Conductual, Departamento de Farmacología, Facultad de Medicina, UNAM, Juriquilla, México.
This study investigates the effect of agmatine on reducing mortality, neurobehavioral alterations, infarct size, and expression of pro-inflammatory cytokines in mice subjected to bilateral carotid thrombosis. Under pentobarbital anesthesia, the left common carotid artery was exposed to 6% FeCl. Thirty-two days later, the same procedure was performed on the right common carotid artery.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
October 2024
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Isoproterenol (ISO) usage is limited by its potential for cardiotoxicity. We sought to investigate the potential of agmatine in mitigating ISO-induced cardiotoxicity. Agmatine (100 mg/kg/day) was intraperitoneally administered to Wistar rats for 7 days in the presence or absence of cardiotoxicity induced by subcutaneous injection of ISO (85 mg/kg) on the sixth and seventh days.
View Article and Find Full Text PDFTurk J Gastroenterol
January 2024
Department of Pathology, University of Health Sciences, Sultan Abdulhamid Han Hospital, İstanbul, Turkey.
Background/aims: Acute pancreatitis which is characterized by pancreatic inflammation can sometimes be difficult to treat because of limited therapeutic options. The purpose of the study was to assess the effects of agmatine in the acute pancreatitis experimental rat model.
Materials And Methods: An acute pancreatitis model was created with the administration of cerulein in 40 female Sprague-Dawley rats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!