Our aim in this commentary is to provide evidence that certain oxoacids formed in anaplerotic reactions control cell proliferation/apoptosis. In tumour cells with impaired Krebs cycle enzymes, some anaplerotic reactions do compensate for the deficit in oxoacids. One of these, oxaloacetate, derived from the transamination of asparagine but not of aspartate, is decarboxylated 4-fold more efficiently in polyoma-virus transformed cells than in their non-transformed counterparts. The deamidation of asparagine, in the cell culture medium, to aspartate by asparaginase decreases asparagine transamination and inhibits concomitantly the growth of asparaginase-sensitive lymphoma cells, suggesting a causal relationship between asparagine transamination and growth. Another oxoacid that can provide ATP when metabolised in mitochondria, but by the branched-chain oxoacid dehydrogenase complex (BCOADC), is 2-oxobutanoate. It has two origins: (a) deamination of threonine, and (b) cleavage of cystathionine, a metabolite derived from methionine. 2-Oxobutanoate in the presence of insulin promotes growth in G1/S arrested cells. But methionine also gives rise to another substrate of BCOADC, 4-methylthio-2-oxobutanoate (MTOB), which is synthesised exclusively from methylthioadenosine (MTA) by the action of MTA phosphorylase. In Met-dependent tumour cells with defective MTA phosphorylase, 2-oxobutanoate production would exceed that of MTOB. Further, BCOADC also has 3-fold greater affinity for 2-oxobutanoate than for MTOB; hence, the deficiency in 3-methylthio propionyl CoA, the final product of MTOB decarboxylation, would be exacerbated. Methional, the transient metabolic precursor in 3-methylthio propionyl CoA biosynthesis, is apoptogenic for both normal and bcl(2)-negative transformed cells in culture. Investigations of other causal relationships between the genes/enzymes mediating the homeostasis of anaplerotic oxoacids and cell growth/death may be worthwhile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(03)00106-0 | DOI Listing |
Arch Biochem Biophys
December 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA. Electronic address:
Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France. Electronic address:
Clostridium botulinum is a Gram -positive, strict anaerobic, rod -shaped, spore -forming, SOD -positive and catalase -negative bacterium. Its antioxidant defenses are not suited to chronic oxidative stress. H₂O₂ and reactive oxygen species have deleterious effects on C.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2024
School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
bioRxiv
September 2024
Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University Medical Center.
Cell Chem Biol
October 2024
Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!