Bartonella henselae can infect humans resulting in a wide range of disease syndromes including cat-scratch disease, fever with bacteremia, endocarditis, bacillary angiomatosis, and bacillary peliosis hepatis, among others. The nature and severity of the clinical presentation correlates well with the status of the hosts' immune system. Individuals with impaired immune function, including HIV infection, progress to systemic infections more often. Patients with intact immune function who become infected with B. henselae usually get cat-scratch disease, a disease that usually involves lymphadenopathy resulting from a strong cellular immune response to the bacterium. However, immunocompromised patients often progress to bacillary angiomatosis or bacillary peliosis hepatis. The reduced ability of the hosts immune response to control bacterial infection apparently results in a bacteremia of longer duration, and in some patients the presence of angiogenic lesions that are unique among bacterial infections to Bartonella. Recently, the role of immune effector cells that produce angiogenic cytokines upon stimulation with B. henselae has been proposed. Here, the current status of the role of the immune response in both controlling infection and in B. henselae-triggered immunopathogenesis is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/104454903767650694 | DOI Listing |
Pol J Vet Sci
June 2024
College of Biological Engineering, Henan University of Technology, Zhengzhou, China.
Mannose oligosaccharide (MOS) has been shown to promote animal growth, maintain intestinal health, and activate the intestinal immune system. However, the question of whether MOS can stimulate the immune system and alleviate acetylsalicylic acid (ASA)-induced gut damage remains unresolved. The purpose of this study was to investigate the impact of MOS pretreatment on the immunological and anti-inflammatory capabilities of rats with ASA-induced intestinal injury.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Pathology, The First Affiliated Hospital of Soochow University, 215123 Suzhou, Jiangsu, China.
Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.
Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.
Front Biosci (Landmark Ed)
December 2024
Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.
Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China.
Most cervical cancers are related to the persistent infections of high-risk Human Papillomavirus (HPV) infections. Increasing evidence has witnessed the immunosuppressive effectiveness of HPV in the oncogenesis steps and progression steps. Here we review the immune response in HPV-related cervical malignancies and discuss the crosstalk between HPVs and the host immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!