We have studied the internal and external dynamics of a Bose-Einstein condensate in an anharmonic magnetic waveguide. An oscillating condensate experiences a strong coupling between the center of mass motion and the internal collective modes. Because of the anharmonicity of the magnetic potential, not only the center of mass motion shows harmonic frequency generation, but also the internal dynamics exhibit nonlinear frequency mixing. Thereby, the condensate shows shape oscillations with an extremely large change in the aspect ratio of up to a factor of 10. We describe the data with a theoretical model to high accuracy. For strong excitations we test the experimental data for indications of a chaotic behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.91.040402 | DOI Listing |
Phys Rev Lett
December 2024
Universität Heidelberg, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
We experimentally study cosmological particle production in a two-dimensional Bose-Einstein condensate, whose density excitations map to an analog cosmology. The expansion of spacetime is realized with tunable interactions. The particle spectrum can be understood through an analogy to quantum mechanical scattering, in which the dynamics of the spacetime metric determine the shape of the scattering potential.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.
View Article and Find Full Text PDFNano Lett
January 2025
School of Engineering, ANU College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.
The tightly bound excitons and strong dipole-dipole interactions in two-dimensional molecular crystals enable rich physics. Among them, superradiance (SR), the spontaneous coherent emission from bright excitons, has sparked considerable interest in quantum-information applications. In addition, optically forbidden states (dark exciton states) have potential to both achieve Bose-Einstein condensation and modulate exciton dynamics.
View Article and Find Full Text PDFSpinor Bose-Einstein condensate is an ideal candidate for implementing the many-body entanglement, quantum measurement and quantum information processing owing to its inherent spin-mixing dynamics. Here we present a system of an Rb atomic spin-1 Bose-Einstein condensate coupled to an optical ring cavity, in which cavity-mediated nonlinear interactions give rise to saddle points in the semiclassical phase space, providing a general mechanism for exponential fast scrambling and metrological gain augment. We theoretically study metrological gain and fidelity out-of-time-ordered correlator based on time-reversal protocols and demonstrate that exponential rapid scrambling dynamics can enhance quantum metrology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!