A method to form and manipulate the properties of nanometer-size liquid bridges by an external electric field is discussed. The properties of bridges are shown to be the result of an interplay among the field-induced polarization of the water layer adsorbed on the surface, the surface energy, and the water condensation from the humid air. For a given tip-sample separation, a simple model predicts the existence of a threshold voltage V(th) to form the bridge in full agreement with experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.91.056101 | DOI Listing |
J Colloid Interface Sci
January 2025
Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124 China. Electronic address:
Photocatalytic CO reduction technology plays a significant role in the energy and environmental sectors, highlighting the necessity for developing high-efficiency and stable catalysts. In this study, a novel photocatalyst, xNiCoO/CN (x = 1, 3, and 5 wt%), was synthesized by depositing zeolitic imidazolate framework-67 (ZIF-67)-derived nickel cobaltate (NiCoO) hollow nanocages onto porous graphitic carbon nitride (g-CN, CN) nanosheets for photocatalytic CO reduction. Under visible light irradiation, the resulting 3NiCoO/CN photocatalyst demonstrated exceptional CO yields of up to 2879.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
When an electric field is applied to or removed from colloidal particle aqueous dispersions, a reversible increase in sedimentation velocity of the colloidal particles, referred to as the Electrically Induced Rapid Separation (ERS) effect, is observed. While electrophoresis and other interfacial electrokinetic phenomena under applied electric fields are well-studied, the phenomena of particle aggregation and re-dispersion caused by the application and removal of the field remain largely unexplored despite their significance. Experiments using mixed aqueous dispersions of poly (methyl methacrylate) (PMMA) particles of different sizes revealed that applying an electric field induced the formation of co-flocs involving both large and small particles, significantly enhancing the sedimentation velocity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Below a critical temperature [Formula: see text], superconductors transport electrical charge without dissipative energy losses. The application of a magnetic field [Formula: see text] generally acts to suppress [Formula: see text], up to some critical field strength at which [Formula: see text] 0 K. Here, we investigate magnetic field-induced superconductivity in high-quality specimens of the triplet superconductor candidate UTe[Formula: see text] in pulsed magnetic fields up to [Formula: see text] [Formula: see text] 70 T.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States.
Nanomagnetic forces deliver precise mechanical cues to biological systems through the remote pulling of magnetic nanoparticles under a permanent magnetic field. Cortical neurons respond to nanomagnetic forces with cytosolic calcium influx and event rate shifts. However, the underlying consequences of nanomagnetic force modulation on cortical neurons remain to be elucidated.
View Article and Find Full Text PDFMicrosc Microanal
November 2024
Chemistry of Surfaces, Interfaces and Nanomaterials, Faculty of Sciences, Université libre de Bruxelles CP243, Brussels 1050, Belgium.
The present communication aims at demonstrating the wealth of information accessible by 1D-atom probe experiments using pulsed field desorption mass spectrometry (PFDMS), ultimately combined with video-field ion microscopy, while subjecting metallic samples to elevated gas pressures and studying surface reaction kinetics. Two case studies are being presented here: (a) the microkinetics of nickel tetracarbonyl (Ni(CO)4) formation through reaction of carbon monoxide with nickel and (b) the nitric oxide decomposition and reaction with hydrogen on platinum at variable steady electric fields mimicking electrocatalytic conditions. In both cases, surface areas with 140-150 atomic sites of the stepped Ni (001) and Pt (111) sample surfaces were probed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!