alpha-Galactosidase (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) from watermelon was covalently immobilized on chitin. The immobilized alpha-galactosidase exhibited an activity of 0.61 U per g of carrier and an activity yield of 67%. The properties of free and immobilized alpha-galactosidase were also searched and compared. The results showed that, optimum conditions for activity were not affected by immobilization. The optimum pH and temperature for free and immobilized enzyme found as pH 6.0 and 65 degress C, respectively. Compared with the free enzyme, the temperature and pH stabilities of the immobilized enzyme were similar. Both the enzymes were stable between pH 2-10 and below 50 degrees C. The Km values for free and immobilized enzyme were determined using p-nitrophenyl-alpha-D-galactopyranoside (PNPG) and raffinose as substrates. Operational stability of the immobilized enzyme was investigated by using both substrates. The operational half-life (t 1/2) was calculated as 34 h for PNPG and 28 h for raffinose. The immobilized alpha-galactosidase was also utilized in the hydrolysis of raffinose. The immobilization procedure on chitin was cheap and also easy to carry out, and the immobilized enzyme had good properties that the potential for practical application is considerable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/bio-120023163 | DOI Listing |
Sensors (Basel)
December 2024
Division de Fotónica, Centro de Investigaciones en Óptica AC, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Guanajuato, Mexico.
Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
This work presents the development of an amperometric biosensor for detecting aspartate aminotransferase (AST) activity in biological fluids using a platinum disk electrode as the working transducer. Optimal concentrations of substrates (aspartate, α-ketoglutarate) and the coenzyme (pyridoxal phosphate) were determined to ensure efficient biosensor operation. A semi-permeable poly-m-phenylenediamine membrane was applied to enhance selectivity against electroactive interferents.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev Trg 19, HR-10000 Zagreb, Croatia.
Enzymatic reactions play an important role in numerous industrial processes, e.g., in food production, pharmaceuticals and the production of biofuels.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 159c Nowoursynowska St., 02-776 Warsaw, Poland.
In the modern world, the principles of the bioeconomy are becoming increasingly important. Recycling and reusability play a crucial role in sustainable development. Green chemistry is based on enzymes, but immobilized biocatalysts are still often designed with synthetic polymers.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy.
This review highlights the progress made in recent years on biosensors aimed at detecting relevant analytes/markers of food peroxidation. Starting from the basic definition of biosensors and the chemical features of peroxidation, here we describe the different approaches that can be used to obtain information about the progress of peroxidation and the efficacy of antioxidants. Aptamers, metal-organic frameworks, nanomaterials, and supported enzymes, in conjunction with electrochemical methods, can provide fast and cost-effective detection of analytes related to peroxidation, like peroxides, aldehydes, and metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!