We describe the implementation of a fluence convolution method to account for the influence of superior-inferior (SI) respiratory induced motion on a Monte Carlo-based dose calculation of a tumor located in the liver. This method involves convolving the static fluence map with a function describing the SI motion of the liver-the motion function has been previously derived from measurements of diaphragm movement observed under fluoroscopy. Significant differences are noted between fluence-convolved and static dose distributions in an example clinical treatment plan; hot and cold spots (on the order of 25%) are observed in the fluence-convolved plan at the superior and inferior borders of the liver, respectively. This study illustrates that the fluence convolution method can be incorporated into Monte Carlo dose calculation algorithms to account for some of the effects of patient breathing during radiotherapy treatment planning, thus leading to more accurate dose calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.1581412DOI Listing

Publication Analysis

Top Keywords

fluence convolution
12
convolution method
12
method account
8
dose calculations
8
monte carlo
8
dose calculation
8
dose
5
fluence
4
method
4
account respiratory
4

Similar Publications

Organ-level instance segmentation enables continuous time-space-spectrum analysis of pre-clinical abdominal photoacoustic tomography images.

Med Image Anal

December 2024

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China. Electronic address:

Photoacoustic tomography (PAT), as a novel biomedical imaging technique, is able to capture temporal, spatial and spectral tomographic information from organisms. Organ-level multi-parametric analysis of continuous PAT images are of interest since it enables the quantification of organ specific morphological and functional parameters in small animals. Accurate organ delineation is imperative for organ-level image analysis, yet the low contrast and blurred organ boundaries in PAT images pose challenge for their precise segmentation.

View Article and Find Full Text PDF

A dose calculation algorithm for boron neutron capture therapy using convolution/superposition method.

Appl Radiat Isot

January 2024

Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Research Institute of Convergence Science, Seoul National University, Seoul, Republic of Korea; Advance Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea. Electronic address:

The convolution/superposition (C/S) method originally designed for photon dose calculation was first applied for developing a treatment planning system for boron neutron capture therapy. The original concept of TEGMA (total energy generated per unit mass) was proposed to represent distinctive dose components from neutron reactions with the elements in the patient's tissue. First, neutron fluence distributions in a homogeneous brain phantom irradiated with an energy-groupwise pencil beam of 2.

View Article and Find Full Text PDF

Spectral photoacoustic imaging (sPAI) is an emerging modality that allows real-time, non-invasive, and radiation-free assessment of tissue, benefiting from their optical contrast. sPAI is ideal for morphology assessment in arterial plaques, where plaque composition provides relevant information on plaque progression and its vulnerability. However, since sPAI is affected by spectral coloring, general spectroscopy unmixing techniques cannot provide reliable identification of such complicated sample composition.

View Article and Find Full Text PDF

A convolution-superposition fluence model for the Siemens HD120 multi leaf collimator with application to a 3D VMAT dose engine.

Biomed Phys Eng Express

September 2023

Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Alberta T6G 1Z2, Canada.

. To construct a fast-calculating fluence modelfor the Siemens HD120 multi leaf collimator (MLC) using convolution-superposition techniques, and to develop a 3D VMAT dose engine using this fluence model.  This work offers analternative to time-consuming open-source Monte Carlo simulations for thosedeveloping in-house dose-calculating software for research or clinical needs.

View Article and Find Full Text PDF

The aim of this work is to develop a discrete ordinates Boltzmann solver that can be used for calculation of absorbed dose from both photons and protons within an inverse planning optimiser, so as to perform accurate dose calculation throughout the whole of the inverse planning process. With photons, five transport sweeps were performed to obtain scattered photon fluence, and unscattered electron fluence was then obtained and used as a fixed source for solution of the electron transport equations. With protons, continuous slowing down was treated as a fixed source, and five transport sweeps were used to calculate scattered fluence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!