The sequences of the large subunit of mitochondrial ribosomal RNA (LsmtrRNA) gene of Malassezia species were analysed. The sequences of the seven species of Malassezia are well separated in each species. Therefore the LsmtrRNA gene is thought to be one of the gene targets for species identification in the genus Malassezia. The dendrogram obtained from this gene supports the previous study of Malassezia species based upon the chromosomal genes. This is the first report of taxonomic analysis of Malassezia species based upon the mitochondrial gene.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2003.tb03373.xDOI Listing

Publication Analysis

Top Keywords

malassezia species
12
genus malassezia
8
large subunit
8
ribosomal rna
8
lsmtrrna gene
8
species based
8
malassezia
6
gene
6
species
6
dna base
4

Similar Publications

A niche in the context of microorganisms defines the specific ecological role or habitat inhabited by microbial species within an ecosystem. For the human commensal Malassezia, the skin surface is considered its primary niche, where it adapts to the skin environment by utilising lipids as its main carbon and energy source. However pathogenic characteristics of Malassezia include the production of allergens, immune modulation and excessive lipid utilisation, which result in several diseases such as pityriasis versicolor, seborrheic dermatitis, Malassezia folliculitis and atopic dermatitis.

View Article and Find Full Text PDF

Allergic rhinitis (AR) and asthma (AS) are two of the most common chronic respiratory diseases and a major public health concern. Multiple studies have demonstrated the role of the nasal bacteriome in AR and AS, but little is known about the airway mycobiome and its potential association to airway inflammatory diseases. Here we used the internal transcriber spacers (ITS) 1 and 2 and high-throughput sequencing to characterize the nasal mycobiome of 339 individuals with AR, AR with asthma (ARAS), AS and healthy controls (CT).

View Article and Find Full Text PDF

The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review.

Front Vet Sci

December 2024

Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization.

View Article and Find Full Text PDF

Detection of anti-MGL_1304 IgE using the ImmunoCAP system for diagnosis of type I allergy to sweat.

Allergol Int

December 2024

Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan. Electronic address:

Background: Type I allergy to sweat is involved in the pathogenesis of atopic dermatitis (AD) and cholinergic urticaria (CholU), with MGL_1304 from Malassezia globosa being the major causative antigen. Currently, no standard diagnostic test exists for sweat allergy that uses serum.

Methods: The ImmunoCAP (iCAP) system to measure antigen-specific IgE was developed using recombinant MGL_1304 (rMGL_1304).

View Article and Find Full Text PDF

Updates on the Pathogenesis of Canine and Feline Atopic Dermatitis: Part 1, History, Breed Prevalence, Genetics, Allergens, and the Environment.

Vet Clin North Am Small Anim Pract

December 2024

College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 408 Raymond Stotzer Parkway, College Station, TX 77845, USA. Electronic address:

Canine atopic dermatitis (cAD) and feline atopic skin syndrome are inflammatory and pruritic skin diseases with both environmental and genetic factors. Genetic factors may include barrier defects and a predisposition to mount T helper 2 lymphocyte immune response when allergens are encountered. These diseases have repeatable patterns of skin and ear inflammation and commonly lead to Staphylococcal and Malassezia skin and ear infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!