Objective: To develop a recombinant vaccinia virus vaccine expressing HPV58 E7 and to determine its immuno-protective activity in mice bearing HPV58 E7+ tumor.
Methods: E7 DNA was amplified and cloned from a plasmid containing HPV58 E7 genome by PCR. To abolish its transforming activity, the nucleotides coding for amino acid residues at positions 24 and 92 were modified by site-directed mutagenesis so that cysteine was substituted by glycine. Balb/c 3T3 cells were transfected with mE7. The expression of E7 protein by the mE7-transfected Balb/c cells was confirmed by immunofluorescence staining. The transfected cells were observed in vitro for anchorage-independent growth and tumorigenesis in nude mice. Recombinant E7 vaccinia virus vaccine was constructed by homologous recombination of HPV58 E7 vaccinia expression plasmid and vaccinia virus (Tiantan stain). The immuno-protective activity of the vaccines was determined by tumor growth inhibition and cytotoxic T lymphocytes (CTL) induction in vaccine-immunized syngeneic mice.
Results: Substitution of cysteine by glycine at both positions 24 and 92 of HPV58 E7 abolished its transforming activity. Growth of HPV E7+ tumor in mice immunized with the recombinant vaccinia virus expressing HPV58 E7 was inhibited, and the surviving time of the immunized mice was prolonged. CTL activity was induced as revealed by in vitro cytotoxicity assay using E7+ tumor cells as target cells.
Conclusions: HPV58 E7, with its transforming potential abolished, may be used as vaccine for immunotherapy of patients with HPV 58 related cancers.
Download full-text PDF |
Source |
---|
BioTech (Basel)
December 2024
State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia.
Heterologous protein expression often faces significant challenges, particularly when the target protein has posttranslational modifications, is toxic, or is prone to misfolding. These issues can result in low expression levels, aggregation, or even cell death. Such problems are exemplified by the expression of phospholipase p37, a critical target for chemotherapeutic drugs against pathogenic human orthopoxviruses, including monkeypox and smallpox viruses.
View Article and Find Full Text PDFJ Med Virol
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types.
View Article and Find Full Text PDFJ Med Virol
January 2025
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The outbreak of clade II monkeypox virus (MPXV) and the additional outbreak in Central Africa of clade I virus from 2023 have attracted worldwide attention. The development of a scalable and effective vaccine against the ongoing epidemic of mpox is urgently needed. We previously constructed two bivalent MPXV mRNA vaccines, LBA (B6R-A29L) and LAM (A35R-M1R), and a quadrivalent mRNA vaccine, LBAAM (B6R-A35R-A29L-M1R).
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
We previously reported that mice immunized twice with a lipid nanoparticle vaccine comprising four monkeypox viral mRNAs raised neutralizing antibodies and antigen-specific T cells and were protected against a lethal intranasal challenge with vaccinia virus (VACV). Here we demonstrated that the mRNA vaccine also protects mice against intranasal and intraperitoneal infections with monkeypox virus and bioluminescence imaging showed that vaccination greatly reduces or prevents VACV replication and spread from intranasal, rectal, and dermal inoculation sites. A single vaccination provided considerable protection that was enhanced by boosting for at least 4 months.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Gamaleya Federal Research Center of Epidemiology and Microbiology, Moscow, 123098 Russia.
Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!