[The method of accelerating osteanagenesis and revascularization of tissue engineered bone in big animal in vivo].

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

Department of Orthopaedics and Traumatology, Nanfang Hospital, First Military Medical University, Guangzhou 510515, China.

Published: February 2003

Objective: To study whether tissue engineered bone can repair the large segment bone defect of large animal or not. To observe what character the fascia flap played during the osteanagenesis and revascularization process of tissue engineered bone.

Methods: 9 Chinese goats were made 2 cm left tibia diaphyseal defect. The repairing effect of the defects was evaluated by ECT, X-ray and histology. 27 goats were divided into three groups: group of CHAP, the defect was filled with coral hydroxyapatite (CHAP); group of tissue engineered bone, the defect was filled with CHAP + bone marrow stroma cells (BMSc); group of fascia flap, the defect was filled with CHAP + BMSc + fascia flap. After finished culturing and inducing the BMSc, CHAP of group of tissue engineered bone and of fascia flap was combined with it. Making fascia flap, different materials as described above were then implanted separately into the defects. Radionuclide bone imaging was used to monitor the revascularization of the implants at 2, 4, 8 weeks after operation. X-ray examination, optical density index of X-ray film, V-G staining of tissue slice of the implants were used at 4, 8, 12 weeks after operation, and the biomechanical character of the specimens were tested at 12 weeks post operation.

Results: In the first study, the defect showed no bone regeneration phenomenon. 2 cm tibia defect was an ideal animal model. In the second study, group of CHAP manifested a little trace of bone regeneration, as to group of tissue engineered bone, the defect was almost repaired totally. In group of fascia flap, with the assistance of fascia flap which gave more chance to making implants to get more nutrient, the repair was quite complete.

Conclusions: The model of 2 cm caprine tibia diaphyseal defect cannot be repaired by goat itself and can satisfy the tissue engineering's demands. Tissue engineered bone had good ability to repair large segment tibia defect of goat. Fascia flap can accelerate the revascularization process of tissue engineered bone. And by this way, it augment the ability of tissue engineered bone to repair the large bone defect of goat.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tissue engineered
36
engineered bone
32
fascia flap
32
bone defect
16
bone
14
repair large
12
defect filled
12
group tissue
12
tissue
11
defect
11

Similar Publications

Hepatocyte growth factor (HGF) is a substance that stimulates the proliferation of hepatocytes which promote healing. We developed a macrophage membrane-encapsulated nanosphere drug delivery system containing HGF for the study of burn wound healing. Twenty-seven Sprague-Dawley rats were randomly divided into three groups: a saline control (NS) group, an engineered macrophage membrane-encapsulated nanospheres (ETMM@NPS) group, and an engineered macrophage membrane-encapsulated nanospheres treatment with HGF-loaded gene (HGF@ETMM@NPS) group.

View Article and Find Full Text PDF

Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

3D Print Med

January 2025

Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.

View Article and Find Full Text PDF

Fish face health hazards due to high-temperature (T) stress and the toxicity associated with nickel (Ni), both of which can occur in aquatic ecosystems. The accumulation of nickel in fish may pose risks to human health when contaminated fish are consumed. Consequently, the goal of this study was to clarify how selenium nanoparticles (Se-NPs) help Pangasianodon hypophthalmus by reducing the effects of nickel and high-temperature stress.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses. However, detailed mechanisms of such processes remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!