Objective: To explore the cytokine responses associated with T cell epitopes from human cartilage glycoprotein 39 (HC gp-39) and the potential for modifying cytokine secretion using altered peptide ligands (APLs).

Methods: Draining lymph node cells were harvested from HLA-DR*0401 transgenic mice that had been immunized with HC gp-39. Cytokine responses to 5 previously identified HLA-DR*0401-restricted HC gp-39 T cell epitopes were studied in vitro. The anchor and T cell receptor (TCR) contact residues of peptide 322-337 were identified, and this information was used to design alanine-substituted APLs. T cells were primed in vivo with wild-type peptide 322-337, restimulated with wild-type peptide or APLs, and the cytokine profiles were compared.

Results: Restimulation with individual peptides elicited distinct cytokine profiles. HC gp-39 (peptide 322-337) elicited a dominant interferon-gamma (IFNgamma) response. Residues within the core (positions P1-P9) 322-337 peptide sequence were critical for T cell recognition. Surprisingly, the N-terminal flanking region was also important for recognition by 6 of 10 specific T cell hybridomas. Substitutions of charged TCR contact residues in the 322-337 core epitope (E332A and K335A) were associated with a significant reduction in the IFNgamma and interleukin-10 (IL-10) stimulation indices. Restimulation with peptides W325A and V326A was also associated with a trend toward reduced IFNgamma and IL-10 secretion. In contrast, restimulation with peptide D330N elicited cytokine profiles more comparable with those resulting from restimulation with wild-type peptide.

Conclusion: This study indicates that APLs of a proinflammatory HC gp-39 T cell epitope may be used to alter the cytokine response from a memory T cell population.

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.11132DOI Listing

Publication Analysis

Top Keywords

cell epitopes
12
peptide 322-337
12
cytokine profiles
12
cell
8
peptide
8
altered peptide
8
peptide ligands
8
cytokine responses
8
gp-39 cell
8
tcr contact
8

Similar Publications

Ancestral SARS-CoV-2 immune imprinting persists on RBD but not NTD after sequential Omicron infections.

iScience

January 2025

Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.

Whether Omicron exposures could overcome ancestral SARS-CoV-2 immune imprinting remains controversial. Here we analyzed B cell responses evoked by sequential Omicron infections in vaccinated and unvaccinated individuals. Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants indicate that immune imprinting is not consistently induced by inactivated or recombinant protein vaccines.

View Article and Find Full Text PDF

Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.

View Article and Find Full Text PDF

Unlabelled: The World Health Organization (WHO) 2030 roadmap for schistosomiasis calls for development of highly sensitive and specific diagnostic tools to continue and sustain progress towards elimination. Serological assays are excellent for sensitive detection of primary schistosome infections and for schistosomiasis surveillance in near- and post-elimination settings. To develop accurate assay formats, it is necessary to identify defined antibody targets with low cross-reactivity and potential for standardized production.

View Article and Find Full Text PDF

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!