The wild-type scorpion toxin BeKm-1, which selectively blocks human ether-a-go-go related (hERG) channels, was radiolabeled with iodine at tyrosine 11. Both the mono- and di-iodinated derivatives were found to be biologically active. In electrophysiological patch-clamp recordings mono-[127I]-BeKm-1 had a concentration of half-maximal inhibition (IC50 value) of 27 nM, while wild-type BeKm-1 inhibited hERG channels with an IC50 value of 7 nM. Mono-[125I]-BeKm-1 was found to bind in a concentration-dependent manner and with picomolar affinity to hERG channel protein in purified membrane vesicles from transfected human embryonic kidney cells (HEK-293). Under optimized conditions the equilibrium dissociation constant ( Kd) values from saturation and kinetic binding analysis were 13 and 14 pM, respectively. Both the association and dissociation of [(125)I]-BeKm-1 were fast (association rate constant, k(on)=3.6 x 10(7) M(-1)s(-1); dissociation rate constant, k(off)=0.005 s(-1)). Wild-type BeKm-1 displaced binding of [125I]-BeKm-1 with half-maximal inhibitory concentrations of 44 pM. In contrast, competition experiments with a BeKm-1 mutant BeKm-1-K18A, in which the toxin interaction site is disrupted, resulted in a drop in affinity by more than 300-fold as compared to the wild-type toxin. Iberiotoxin and apamin, peptide inhibitors of Ca2+-activated K+-channels, had no effect on [125I]-BeKm-1 binding. Adding the classical rapid delayed rectifier current (IKr) blocker E-4031 reduced binding of [125I]-BeKm-1 to the hERG channel to an IC50 of 7 nM. In autoradiographic studies on rat hearts, binding of [125I]-BeKm-1 was dose-dependent and could partially be displaced by the addition of excess amounts of non-radioactive BeKm-1. The density of the radioactive signal was equally distributed in the myocardium of both the ventricle and atria indicating a homogenous expression of hERG channels throughout the heart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-003-1125-9 | DOI Listing |
Biomolecules
December 2024
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.
View Article and Find Full Text PDFJ Med Chem
January 2025
Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.
View Article and Find Full Text PDFJ Cheminform
December 2024
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.
Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain. Electronic address:
Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!