Enolization of acetone in superheated water detected via radical formation.

J Am Chem Soc

Department of Chemistry and TRIUMF, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.

Published: August 2003

Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja036377xDOI Listing

Publication Analysis

Top Keywords

muonium addition
8
enolization acetone
4
acetone superheated
4
superheated water
4
water detected
4
detected radical
4
radical formation
4
formation muoniated
4
muoniated free
4
free radicals
4

Similar Publications

This paper describes muon spin spectroscopy studies of 12-phosphatetraphene stabilized by a peri-trifluoromethyl group and a meso-aryl substituent. Even though the prepared solution in tetrahydrofuran (THF) was quite dilute (0.060 M) for transverse-field muon spin rotation (TF-µSR) measurements, the π-extended heavier congener of tetraphene presented a pair of signals due to a muoniated radical from which the muon hyperfine coupling constant (hfc) was determined.

View Article and Find Full Text PDF

A theoretical study on muoniated N-heterocyclic carbenes using path integral molecular dynamics.

J Chem Phys

November 2024

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.

Several N-heterocyclic carbenes (NHCs) are experimentally observed upon the addition of muonium (Mu), and the hyperfine coupling constants (HFCCs) of muon are measured. Theoretical investigation of Mu has been challenging due to significant quantum effects. Herein, we performed an ab initio path integral molecular dynamics (PIMD) simulation, which accurately considers multi-dimensional quantum effects, to theoretically investigate muoniated 1,3-dihydro-2H-imidazole-2-ylidene (Mu-IY).

View Article and Find Full Text PDF

Producing Conventional and Transient Amino(mercapto)methyl Radicals by Addition of Muonium to a Crystalline Thioformamide (Mes*NHCH=S).

Chemphyschem

June 2024

Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.

Muonium (Mu=μe) is composed of a muon of light isotope of proton (μ) and electron (e) and can be used as a light surrogate for a hydrogen atom. In this paper, we investigated addition of muonium to a newly synthesized Mes*-substituted thioformamide (Mes*NHCH=S, Mes*=2,4,6-tBuCH). Transverse-field muon spin rotation (TF-μSR) of a solution sample of the thioformamide confirmed addition of muonium to the sulfur atom leading to the corresponding C-centered radical [Mes*NHC(H)⋅-SMu].

View Article and Find Full Text PDF

Understanding free radical addition to multiple bonds is important to elucidating the mechanistic details of addition polymerization reactions, albeit the fleeting radical intermediates are very difficult to detect by conventional methodologies. Muon spin spectroscopy (μSR) is a highly sensitive method that can detect radical species at 10 spins (cf. EPR: 10 spins, NMR: 10 spins).

View Article and Find Full Text PDF

The Reaction of Muonium with Hydrogen Peroxide in Aqueous Solution.

Chemphyschem

November 2023

Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

Rate constants for the reactions of muonium (Mu) (the ultralight isotope of the hydrogen atom) with H O in H O and D O in D O have been determined at various temperatures and pH (pD) values. The data are consistent with the three reactions: , , and the equivalent for the deuterated entities. A significant positive H/D isotope effect was found for the undissociated peroxide, while for the anions the effect was negligible or slightly in the opposite direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!