Development of novel selective cell ablation in the mammary gland and brain to study cell-cell interactions and chemoprevention.

Recent Results Cancer Res

Department of Pathology, Western Infirmary, Glasgow G11 6NT, UK.

Published: December 2003

We have generated transgenic mice which express the gene encoding Escherichia coli nitroreductase (NTR) specifically in the luminal epithelial cells of the mammary gland and the glial cells of the brain. The enzyme activates an antitumour drug CB 1954, to produce a cross-linking agent that kills all cells expressing the enzyme. We have shown that administration of the antitumour drug CB 1954 rapidly and selectively kills these cells. Original experiments demonstrated the ability to ablate the luminal cells in the mammary gland with no apparent bystander effect. Subsequently, astrocytes expressing nitroreductase under the targeting of the GFAP promoter were selectively ablated following administration of the prodrug CB 1954 produces a degeneration of granular neurones due to changes in glutamate levels. Recent experiments demonstrated inhibition of myc-dependent mammary tumours using the same enzyme (nitroreductase)-prodrug (CB 1954), combination. Owing to the ease of control of NTR-mediated cell ablation, we anticipate that this system will supersede herpes simplex virus type 1 thymidine kinase. There are widespread potential applications for this approach in the dissection of complex cellular interactions during development and in the adult organism. The present transgenic models also have important applications for the study in vivo of novel prodrugs that can be selected for variable degrees of bystander effects. Such studies will have particular significance for those groups advocating the use of NTR as an appropriate enzyme for gene-directed enzyme prodrug therapy by providing models of a wide range of human disease for mechanistic and therapeutic experimentation. The results clearly demonstrate that the model has potential to study chemoprevention and fundamental questions on cell-cell interactions in cell biology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-642-55647-0_4DOI Listing

Publication Analysis

Top Keywords

mammary gland
12
cell ablation
8
cell-cell interactions
8
cells mammary
8
antitumour drug
8
drug 1954
8
kills cells
8
experiments demonstrated
8
cells
5
enzyme
5

Similar Publications

Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.

View Article and Find Full Text PDF

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).

View Article and Find Full Text PDF

Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.

View Article and Find Full Text PDF

Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!