Measurement of the time course of DNA/RNA hybridization and RNA detection using fluorescence polarization analysis.

Nucleic Acids Symp Ser

Advanced Science and Technology Laboratory, 151-366, Asaminami-ku, Hiroshima, Hiroshima 731-3162, Japan.

Published: October 2003

Using fluorescence polarization analysis, the time courses of hybridization between probe oligo-DNAs and target RNAs were measured. The RNAs were amplified using the DNA templates of Shiga toxin genes by NASBA (Nucleic Acid Sequence Based Amplification). Two DNA probes were designed for detecting the genes and they rapidly and specifically hybridized with their target RNA sequences. NASBA could be sufficiently used for the combination and DNA/RNA hybridization could be detected in the fluorescence polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nass/44.1.145DOI Listing

Publication Analysis

Top Keywords

fluorescence polarization
12
dna/rna hybridization
8
polarization analysis
8
measurement time
4
time course
4
course dna/rna
4
hybridization rna
4
rna detection
4
detection fluorescence
4
analysis fluorescence
4

Similar Publications

Fluorescence polarization assays to study carbohydrate-protein interactions.

Org Biomol Chem

January 2025

Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.

Fluorescence polarization (FP) is a useful technique to study the interactions between carbohydrates and proteins in solution, by using standard equipment and minimal sample consumption. Here, we will review the most recent FP-based approaches in this field, including the study of carbohydrate-lectin, carbohydrate-enzyme and glycosaminoglycan-protein interactions. Advantages and limitations of this methodology will be discussed.

View Article and Find Full Text PDF

Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.

View Article and Find Full Text PDF

The 2200-nm window has recently been demonstrated as the longest excitation window for deep-tissue multiphoton microscopy (MPM). So far, MPM at this window exclusively uses a soliton laser source based on soliton self-frequency shift (SSFS). In order to boost the multiphoton signal level at this window, here we demonstrate a polarization multiplexed soliton source based on orthogonal polarized SSFS in a polarization maintaining large mode area (PM LMA) fiber.

View Article and Find Full Text PDF

In recent years, studies of surfaces at more realistic conditions has advanced significantly, leading to an increased understanding of surface dynamics under reaction conditions. The development has mainly been due to the development of new experimental techniques or new experimental approaches. Techniques such as High Pressure Scanning Tunneling/Force Microscopy (HPSTM/HPAFM), Ambient Pressure X-ray Photo emission Spectroscopy (APXPS), Surface X-Ray Diffraction (SXRD), Polarization-Modulation InfraRed Reflection Absorption Spectroscopy (PMIRRAS) and Planar Laser Induced Fluorescence (PLIF) at semi-realistic conditions has been used to study planar model catalysts or industrial materials under operating conditions.

View Article and Find Full Text PDF

The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!