In recent years, nonfusion stabilization of the lumbar spine has gained more and more popularity. These nonfusion systems intend to maintain or restore the intersegmental motions to magnitudes of the intact spine and have no negative effects on the segments adjacent to the stabilized one. This study investigated the DYNESYS, a dynamic nonfusion system, which is designed to stabilize the bridged segments while maintaining the disc and the facet joints. To determine the magnitude of stabilization and the effect of the stabilization on the adjacent segment, six lumbar cadaver spines were fixed in a spine tester and loaded with pure moments in the three main motion planes. For each spine, four different stages were tested: intact, defect of the middle segment, fixation with the DYNESYS, and fixation with the internal fixator. Intersegmental motions were measured at all levels. For the bridged segment, the DYNESYS stabilized the spine and was more flexible than the internal fixator. This difference between the internal fixator and the DYNESYS was most pronounced in extension (P < 0.05), with the DYNESYS restoring the motion back to the level of the intact spine. The motion in the adjacent segments was not influenced by either stabilization method. Our results suggest that the DYNESYS provides substantial stability in case of degenerative spinal pathologies and can therefore be considered as an alternative method to fusion surgery in these indications while the motion segment is preserved.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00024720-200308000-00015DOI Listing

Publication Analysis

Top Keywords

internal fixator
12
stabilization lumbar
8
lumbar spine
8
adjacent segments
8
intersegmental motions
8
intact spine
8
spine
7
dynesys
6
dynamic stabilization
4
spine effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!