Retrograde removal of an incarcerated solid titanium femoral nail after subtrochanteric fracture.

J Orthop Trauma

Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.

Published: August 2003

Intramedullary nailing with a solid titanium nail can result in significant bone ingrowth. Failure of an implant requires removal for replacement with another device. Previous methods have included use of extractors for cannulated nails. When extractors are not available or are inadequate, a simple retrograde push-out method can be used as described here.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005131-200308000-00008DOI Listing

Publication Analysis

Top Keywords

solid titanium
8
retrograde removal
4
removal incarcerated
4
incarcerated solid
4
titanium femoral
4
femoral nail
4
nail subtrochanteric
4
subtrochanteric fracture
4
fracture intramedullary
4
intramedullary nailing
4

Similar Publications

Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.

View Article and Find Full Text PDF

Basaltic glass was prepared via the solid-state melt method, using Ce to simulate tetravalent actinides. The structure, thermal stability and leaching characteristics of basaltic glass with different contents of CeO were investigated. The XRD/SEM-EDX/Raman results showed that the simulated waste loading of CeO in basaltic glass reached ~ 18 wt%, and CeO crystals precipitated when the CeO content reached 20 wt%.

View Article and Find Full Text PDF

All-solid-state lithium batteries (ASSBs) are among the most promising energy storage technologies, particularly for electric vehicles, due to their enhanced safety. However, performances of these systems are still hindered by interfacial side reactions at electrode/electrolyte interfaces, especially when sulfide electrolytes are used, and additional issues of mechanical nature. In this work, an ASSB system composed of an argyrodite (LiPSCl) electrolyte, a lithium-rich sulfide cathode (LiTiS) operating at moderate voltage, and a lithium metal anode is investigated.

View Article and Find Full Text PDF

Novel core-shell flower-like polyamine/C dual-functional magnetic titanium dioxide-based oligopolymer (FeO@fTiO-PAPMA/C) microspheres were synthesized and used as a magnetic solid-phase extraction (MSPE) adsorbent to purify 52 pesticides in bayberry samples. The FeO@fTiO-PAPMA/C microspheres were fully characterized and it can obviously improve the purification ability of 52 pesticides in bayberry samples. Coupled to LC-MS/MS, the developed method indicated low limits of detection (LODs) and limits of quantification (LOQs) of 0.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!