The stroke-prone spontaneously hypertensive rat (SHRSP) is a model of heritable hypertension-associated cerebrovascular injury. This study sought to compare SHRSP to the stroke-resistant SHR strain to identify genes and protein pathways whose expression and/or function was significantly altered between the strains prior to the onset of stroke. Cerebral cortex gene expression profiles from male SHRSPs and matched SHRs were examined by Affymetrix microarray analysis. mRNAs encoding the brain-derived neurotrophic factor receptor (TrkB) and multiple kinases of the MAPK/AKT signaling pathways, including JNK2, AKT2, and PI3K, were differentially expressed between SHRSP and SHR. Because these data suggest altered function in pathways involving MAP and AKT kinase activity, we performed Western blot using phosphorylation state-specific antibodies to characterize activity of MAP kinase and PI3K/AKT pathways. Changes in the levels of the phosphorylated forms of these kinases paralleled the changes in transcript levels observed between the strains. Two-dimensional gel electrophoresis and peptide fragment mass fingerprinting were used to identify altered protein substrates of these kinases. Protein profiling of kinase substrates further supported the notion of perturbed kinase-mediated signaling in SHRSP and identified adenylyl cyclase associated protein 2, TOAD-64, propionyl CoA carboxylase, APG-1, and valosin-containing protein as kinase targets whose phosphorylation state is altered between these strains. Altered gene and protein expression patterns in SHRSP are consistent with increased vulnerability of this strain to cerebrovascular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00020.2003DOI Listing

Publication Analysis

Top Keywords

gene expression
8
perturbed kinase-mediated
8
kinase-mediated signaling
8
cerebrovascular injury
8
altered strains
8
protein
6
shrsp
5
altered
5
expression profiling
4
profiling functional
4

Similar Publications

Damage activates EXG1 and RLP44 to suppress vascular differentiation during regeneration in Arabidopsis.

Plant Commun

January 2025

Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:

Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.

View Article and Find Full Text PDF

Impact of Fli1 deletion on B cell populations: A focus on age-associated B cells and transcriptional dynamics.

J Dermatol Sci

December 2024

Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan. Electronic address:

Background: Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored.

Objective: This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs).

Methods: Splenocytes of Fli1 BcKO (Cd19-Cre; Fli1) and Cd19-Cre mice were analyzed flow cytometrically.

View Article and Find Full Text PDF

Temporal dynamics of PM induced cell death: Emphasizing inflammation as key mediator in the late stages of prolonged myocardial toxicity.

Exp Cell Res

January 2025

Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:

Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.

View Article and Find Full Text PDF

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress.

Int J Biol Macromol

January 2025

Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:

B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!