Loss of T cell number and function during HIV infection or secondary to pharmacologic immunosuppression renders individuals susceptible to opportunistic infections, including Pneumocystis carinii pneumonia. Because costimulatory receptors are critical for optimal T cell function, we hypothesized that these proteins would regulate susceptibility to opportunistic infections. We found that despite normal T cell numbers, mice deficient in the costimulatory molecules CD2 and CD28 spontaneously developed P. carinii pneumonia. In experiments using intratracheal injection of P. carinii organisms to induce infection, the loss of CD28 alone was sufficient to render mice susceptible to acute infection; however, the organism was eventually cleared. Examination of inflammatory responses to P. carinii revealed that mice deficient in both CD2 and CD28 accumulated CD8(+) T cells in their lungs in response to infection and demonstrated markedly reduced specific Ab titers. Analysis of cytokine profiles suggested that regulation of IL-10 and IL-15 may be important elements of the response to this pathogen. Thus, costimulatory molecule function is critical in determining the initial susceptibility to infection with P. carinii. Analysis of immunologic responses in these mice may provide important insights into the defects that render individuals susceptible to opportunistic infection, and provide opportunities for novel immunologically based therapies.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.4.1969DOI Listing

Publication Analysis

Top Keywords

costimulatory molecule
8
molecule function
8
susceptibility infection
8
pneumocystis carinii
8
individuals susceptible
8
susceptible opportunistic
8
opportunistic infections
8
carinii pneumonia
8
mice deficient
8
cd2 cd28
8

Similar Publications

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.

View Article and Find Full Text PDF

Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.

View Article and Find Full Text PDF

: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a crucial role in the antigen-specific immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!