Toxins and viruses often initiate their attacks by binding to specific proteins on the surfaces of target cells. Bacterial toxins (e.g. bacteriocins) and viruses (bacteriophages) targeting Gram-negative bacteria typically bind to outer membrane proteins. Bacterial E-colicins target Escherichia coli by binding to the outer membrane cobalamin transporter BtuB. Colicins are tripartite molecules possessing receptor-binding, translocation, and toxin domains connected by long coiled-coil alpha-helices. Surprisingly, the crystal structure of colicin E3 does not possess a recognizable globular fold in its receptor-binding domain. We hypothesized that the binding epitope of enzymatic E-colicins is a short loop connecting the two alpha-helices that comprise the coiled-coil region and that this flanking coiled-coil region serves to present the loop in a binding-capable conformation. To test this hypothesis, we designed and synthesized a 34-residue peptide (E-peptide-1) corresponding to residues Ala366-Arg399 of the helix-loop-helix region of colicin E3. Cysteines placed near the ends of the peptide (I372C and A393C) enabled crosslinking for reduction of conformational entropy and formation of a peptide structure that would present the loop epitope. A fluorescent analog was also made for characterization of binding by measurement of fluorescence polarization. Our analysis shows the following. (i). E-peptide-1 is predominantly random coil in aqueous solution, but disulfide bond formation increases its alpha-helical content in both aqueous buffer and solvents that promote helix formation. (ii). Fluorescein-labeled E-peptide-1 binds to purified BtuB in a calcium-dependent manner with a Kd of 43.6 +/- 4.9 nm or 2370 +/- 670 nm in the presence or absence of calcium, respectively. (iii). In the presence of calcium, cyanocobalamin (CN-Cbl) displaces E-peptide-1 with a nanomolar inhibition constant (Ki = 78.9 +/- 5.6 nm). We conclude that the BtuB binding sites for cobalamins and enzymatic E-colicins are overlapping but inequivalent and that the distal loop and (possibly) the short alpha-helical flanking regions are sufficient for high affinity binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M308227200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!