Water samples collected throughout several reclamation facilities were analyzed for the presence of infectious Cryptosporidium parvum by the focus detection method-most-probable-number cell culture technique. Results revealed the presence of infectious C. parvum oocysts in 40% of the final disinfected effluent samples. Sampled effluent contained on average seven infectious oocysts per 100 liters. Thus, reclaimed water is not pathogen free but contains infectious C. parvum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC169138PMC
http://dx.doi.org/10.1128/AEM.69.8.4983-4984.2003DOI Listing

Publication Analysis

Top Keywords

infectious cryptosporidium
8
cryptosporidium parvum
8
parvum oocysts
8
presence infectious
8
infectious parvum
8
infectious
5
parvum
4
oocysts final
4
final reclaimed
4
reclaimed effluent
4

Similar Publications

Molecular characterization and zoonotic risk assessment of spp. in Philippine bats.

Food Waterborne Parasitol

March 2025

Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan.

is a genus of parasitic protozoa known to cause diarrheal disease that impacts both humans and animals through infection of various vertebrate species. Bats are recognized as reservoirs for zoonotic pathogens, including . The Philippines, renowned for its rich biodiversity, is home to diverse bat species, providing a unique ecological setting to investigate infection dynamics.

View Article and Find Full Text PDF

Cryptosporidium parvum is a protozoan parasite that causes severe diarrheal illness in children and each year nearly 50,000 children under age 5 die due to the disease. Despite tremendous research efforts, there remains a lack of effective therapies and vaccines. Novel inhibitors against N-myristoyltransferase of C.

View Article and Find Full Text PDF

SLC26A3 (DRA, the Congenital Chloride Diarrhea Gene): A Novel Therapeutic Target for Diarrheal Diseases.

Cell Mol Gastroenterol Hepatol

December 2024

- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, USA; - Jesse Brown VA Medical Center, Chicago, IL, USA. Electronic address:

Diarrhea associated with enteric infections, gut inflammation, and genetic defects poses a major health burden and results in significant morbidity and mortality. Impaired fluid and electrolyte absorption and/or secretion in the intestine are the hallmark of diarrhea. Electroneutral NaCl absorption in the mammalian GI tract involves the coupling of Na/H and Cl/HCO exchangers.

View Article and Find Full Text PDF

Background: Diarrhoeal diseases claim more than 1 million lives annually and are a leading cause of death in children younger than 5 years. Comprehensive global estimates of the diarrhoeal disease burden for specific age groups of children younger than 5 years are scarce, and the burden in children older than 5 years and in adults is also understudied. We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to assess the burden of, and trends in, diarrhoeal diseases overall and attributable to 13 pathogens, as well as the contributions of associated risk factors, in children and adults in 204 countries and territories from 1990 to 2021.

View Article and Find Full Text PDF

Introduction: is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment.

Methods: At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with oocysts (in-house strain LE-01-Cp-15).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!