Automated three-dimensional (3-D) image analysis methods are presented for tracing of dye-injected neurons imaged by fluorescence confocal microscopy and HRP-stained neurons imaged by transmitted-light brightfield microscopy. An improved algorithm for adaptive 3-D skeletonization of noisy images enables the tracing. This algorithm operates by performing connectivity testing over large N x N x N voxel neighborhoods exploiting the sparseness of the structures of interest, robust surface detection that improves upon classical vacant neighbor schemes, improved handling of process ends or tips based on shape collapse prevention, and thickness-adaptive thinning. The confocal image stacks were skeletonized directly. The brightfield stacks required 3-D deconvolution. The results of skeletonization were analyzed to extract a graph representation. Topological and metric analyses can be carried out using this representation. A semiautomatic method was developed for reconnection of dendritic fragments that are disconnected due to insufficient dye penetration, an imaging deficiency, or skeletonization errors.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S143192760303040XDOI Listing

Publication Analysis

Top Keywords

automated three-dimensional
8
neurons imaged
8
three-dimensional tracing
4
tracing neurons
4
neurons confocal
4
confocal brightfield
4
brightfield images
4
images automated
4
three-dimensional 3-d
4
3-d image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!