[Arsenite-induced lipid peroxidation in Saccharomyces cerevisiae].

Mikrobiologiia

Department of Biochemistry and Biophysics, Saratov State University, ul. Astrakhanskaya 83, Saratov, 410026 Russia.

Published: February 2004

The ability of sodium arsenite at concentrations of 10(-2), 10(-4), and 10(-6) M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10(-2) and 10(-4) M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10(-6) M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lipid peroxidation
24
arsenite concentrations
12
peroxidation saccharomyces
8
concentrations 10-2
8
10-2 10-4
8
enhanced lipid
8
peroxidation
6
arsenite
5
lipid
5
cells
5

Similar Publications

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.

View Article and Find Full Text PDF

Redox biomarker levels in patients with myelodysplastic syndrome.

Biomed Rep

March 2025

Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.

View Article and Find Full Text PDF

Introduction: Oxyresveratrol (ORes) exhibits significant anticancer activity, particularly against breast cancer. However, its exact mechanism of action (MOA) remains unclear. This study aimed to investigate the pharmacological activity and underlying MOA.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!