AI Article Synopsis

  • HOXD13 is a homeobox gene located at chromosome 2q31.1, and mutations in this gene are often linked to limb malformations, particularly synpolydactyly.
  • A novel mutation (758-2delA) was found in a family with foot abnormalities, specifically bilateral partial duplication of the 2nd metatarsals, despite not having the typical synpolydactyly symptoms.
  • This mutation affects the splice site of exon 2, likely disrupting normal splicing of HOXD13 and supporting the idea that haploinsufficiency of this gene can lead to unique phenotypes.

Article Abstract

HOXD13 is the most 5' of the HOXD cluster of homeobox genes in chromosome band 2q31.1. Heterozygous expansions of a polyalanine tract in HOXD13 are typically associated with synpolydactyly characterized by insertional digit duplication associated with syndactyly. We screened for mutations of HOXD13 in patients with a variety of limb malformations and identified a novel heterozygous mutation (758-2delA) in a three-generation family without the typical synpolydactyly phenotype in the hands, but with bilateral partial duplication of the 2nd metatarsals within the first web space of the feet. This mutation locates in the acceptor splice site of exon 2 and is predicted to cause failure of normal splicing of HOXD13. The foot abnormality in this family is similar to that described in two families by Goodman et al. [1998: Am. J. Hum. Genet. 63: 992-1000] in which different deletions of HOXD13 were reported. These findings together lend support to a distinct phenotype resulting from haploinsufficiency of HOXD13.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.20103DOI Listing

Publication Analysis

Top Keywords

acceptor splice
8
splice site
8
hoxd13
7
site mutation
4
mutation hoxd13
4
hoxd13 variable
4
variable hand
4
hand consistent
4
consistent foot
4
foot malformations
4

Similar Publications

Novel De Novo Intronic Variant of SYNGAP1 Associated With the Neurodevelopmental Disorders.

Mol Genet Genomic Med

February 2025

Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.

Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.

View Article and Find Full Text PDF

We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.

View Article and Find Full Text PDF

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Deep learning analyses of splicing variants identify the link of PCP4 with amyotrophic lateral sclerosis.

Brain

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.

View Article and Find Full Text PDF

Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!