A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enantiomeric impurity profiling in ephedrine samples by enantioselective capillary electrochromatography. | LitMetric

Enantiomeric impurity profiling in ephedrine samples by enantioselective capillary electrochromatography.

Electrophoresis

Christian Doppler Laboratory for Molecular Recognition Materials, Institute of Analytical Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria.

Published: August 2003

This study reports on the development and preliminary validation of a capillary electrochromatographic (CEC) method for the enantioselective impurity profiling of D-ephedrine. As chiral selector a novel low-molecular-weight strong chiral cation exchanger, based on penicillamine sulfonic acid, immobilized on thiol-modified silica particles (3.5 microm) was employed. Under optimized conditions, the ephedrine enantiomers were separated on this chiral stationary phase (CSP) with an enantioselectivity of 1.11, an average efficiency of 321 550 plates per meter, and a resolution value of 4.77. A preliminary method validation was carried out to demonstrate the applicability of CEC for enantiomeric excess (ee) determination. Run-to-run repeatabilities (n = 5) reached relative standard deviation values (RSD) of 0.18 and 0.19% for the migration times of L- and D-enantiomer, respectively, 0.3% for the resolution, and about 0.9% for the peak efficiencies. An approach called self-internal standard method was utilized to measure a standard calibration curve. Excellent linearity with a correlation coefficient of R(2) = 0.9998 was found for samples with concentrations in the range between 0.03 and 5 mg.mL(-1) D-ephedrine spiked with L-ephedrine at a constant concentration of 0.2 mg.mL(-1). The high loadability of the investigated CSP and good peak sensitivity allowed us to determine less than 0.1% enantiomeric impurity with good accuracy. The limit of detection (LOD) for the L-enantiomer in a 3 mg.mL(-1) D-ephedrine solution was found to be 0.035% (S/N = 3) and the limit of quantitation (LOQ) 0.058% (S/N = 5). For L-ephedrine samples the strong cation-exchange (SCX)-type CSP with opposite configuration was utilized so that the enantiomeric impurity eluted before the main component peak yielding similar results in terms of separation and validation. Based on these results, the presented nonaqueous CEC methods are assessed as principally suitable for ee determination of ephedrine in terms of repeatability and method sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200305489DOI Listing

Publication Analysis

Top Keywords

enantiomeric impurity
12
impurity profiling
8
mgml-1 d-ephedrine
8
enantiomeric
4
profiling ephedrine
4
ephedrine samples
4
samples enantioselective
4
enantioselective capillary
4
capillary electrochromatography
4
electrochromatography study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!