We performed a genomewide scan and genetic linkage analysis, to identify loci associated with age-related macular degeneration (AMD). We collected 70 families, ranging from small nuclear families to extended multigenerational pedigrees and consisting of a total of 344 affected and 217 unaffected members available for genotyping. We performed linkage analyses using parametric and allele-sharing models. We performed the analyses on the complete pedigrees but also subdivided the families into nuclear pedigrees. Finally, to dissect potential genetic factors responsible for differences in disease manifestation, we stratified the sample by two major AMD phenotypes (neovascular AMD and geographic atrophy) and by age of affected family members at the time of our evaluation. We have previously demonstrated linkage between AMD and 1q25-31 in a single large family. In the combined sample, we have detected the following loci with scores exceeding a LOD=2 cutoff under at least one of the models considered: 1q31 (HLOD=2.07 at D1S518), 3p13 (HLOD=2.19 at D3S1304/D3S4545), 4q32 (HLOD=2.66 at D4S2368, for the subset of families with predominantly dry AMD), 9q33 (LODZlr=2.01 at D9S930/D9S934), and 10q26 (HLOD=3.06 at D10S1230). Using correlation analysis, we have found a statistically significant correlation between LOD scores at 3p13 and 10q26, providing evidence for epistatic interactions between the loci and, hence, a complex basis of AMD. Our study has identified new loci that should be considered in future mapping and mutational analyses of AMD and has strengthened the evidence in support of loci suggested by other studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180679PMC
http://dx.doi.org/10.1086/377701DOI Listing

Publication Analysis

Top Keywords

age-related macular
8
amd
7
families
5
loci
5
macular degeneration--a
4
degeneration--a genome
4
genome scan
4
scan extended
4
extended families
4
families performed
4

Similar Publications

Quercetin Alleviates All--Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling.

Int J Mol Sci

December 2024

Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.

All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.

View Article and Find Full Text PDF

: Age-related macular degeneration (AMD) is the leading cause of blindness, affecting millions worldwide. Its pathogenesis involves the death of the retinal pigment epithelium (RPE), followed by photoreceptor degeneration. Although AMD is multifactorial, various genetic markers are strongly associated with the disease and may serve as biomarkers for evaluating treatment efficacy.

View Article and Find Full Text PDF

: Age-related macular degeneration (AMD) is the leading cause of low vision and legal blindness in adults in developed countries. Wet AMD can be successfully treated using vascular endothelial growth factor (VEGF) inhibitors; however, dry AMD currently has no effective treatment. The purpose of this study is to analyze the efficacy of intraocular injection of plasma rich in growth factors (PRGF) in an AMD mouse model induced by intraperitoneal administration of sodium iodate.

View Article and Find Full Text PDF

This review highlights the therapeutic potential of epigallocatechin gallate (EGCG) and forskolin in managing retinal diseases, with a focus on glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy. EGCG, a potent polyphenol from green tea, exhibits significant antioxidant, anti-inflammatory, and neuroprotective effects, making it a promising candidate for reducing oxidative stress and inflammation in ocular tissues. Forskolin, a diterpene from Coleus forskohlii, increases cyclic AMP (cAMP) levels, which helps lower intraocular pressure (IOP) and provides neuroprotection.

View Article and Find Full Text PDF

: Lesions characterized as complete retinal pigment epithelium and outer retinal atrophy (cRORA) are linked to the progression of intermediate age-related macular degeneration (iAMD). However, the extent of functional impairment of such precursor lesions remains uncertain. : In this cross-sectional study, 4 participants (mean age ± standard deviation: 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!