In 1991, routine biotoxin monitoring of bivalve molluscs at aquaculture sites along the eastern shore of Nova Scotia, Canada revealed a group of novel seafood toxins called spirolides, whose origin was the dinoflagellate Alexandrium ostenfeldii. Result from this preliminary study in rodents demonstrates a highly toxic lethal response in rats and mice after intraperitoneal injections of lipophilic extracts. To elucidate the modes of action and toxicologic pathology, brain and internal organs were examined by histology and various biomarkers of neural injury were monitored by immunohistochemistry (IH) and/or transcriptional analysis. The histological and transcriptional data showed that the effects of spirolides are species dependent for mice and rats. Histopathology showed that in the mouse brain, the hippocampus and brain stem appeared to be the major target regions but no histological changes were observed in the rat. Transcriptional analysis in the mouse brain showed no alterations in the biomarkers whereas in the rat brain there were major changes in the markers of neuronal injury. These biomarkers included the early injury markers HSP-72, c-jun and c-fos which are essential for converting stimuli into intracellular changes within neurons. The potential effects of spirolides were also evaluated with respect to different subtypes of the acetylcholine receptors (AChRs) since earlier reports showed these as putative targets. Both the muscarinic and nicotinic AChRs were found to be upregulated. Hence, transcriptional and immunohistochemical analysis does provide insight to the molecular mechanisms of this novel group of shellfish toxins. No histological changes were observed in other tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0161-813X(03)00014-7DOI Listing

Publication Analysis

Top Keywords

transcriptional analysis
12
neural injury
8
injury biomarkers
8
shellfish toxins
8
effects spirolides
8
mouse brain
8
histological changes
8
changes observed
8
transcriptional
5
brain
5

Similar Publications

Aim: Young people with childhood-onset motor disabilities face unique challenges in understanding and managing their condition. This study explored how they learnt about their condition.

Method: A descriptive qualitative study was conducted in 2023-2024 at a Swiss paediatric neurorehabilitation unit.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Pontederia cordata L. is an aquatic ornamental plant native to the Americas, but has been widely distributed in South Asia, Australia, and Europe. The genetic mechanisms behind its rapid adaptation and spread have not yet been well understood.

View Article and Find Full Text PDF

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!