The extracellular concentrations of Ca(2+) and Mg(2+) are well known to play important roles in the function of the central nervous system. We examined the effects of extracellular Ca(2+) and Mg(2+) on ATP release and intercellular signaling in astrocytes. The extent of propagation of intercellular Ca(2+) waves evoked by mechanical stimulation was increased by reduction of extracellular Ca(2+) ([Ca(2+)](o)) or Mg(2+) concentration ([Mg(2+)](o)) and was decreased by elevated [Mg(2+)](o). Reduction of extracellular Ca(2+) concentration ([Ca(2+)](o)) evokes intercellular Ca(2+) signaling in astrocytes; a similar effect was observed in response to change from 5 mM [Mg(2+)](o) to 0 [Mg(2+)](o). Release of low-molecular-weight dyes and ATP was also activated by low [Ca(2+)](o) or [Mg(2+)](o) and inhibited by high [Ca(2+)](o) or [Mg(2+)](o). Astrocytes showed low [Ca(2+)](o)-activated whole cell currents consistent with currents through connexin hemichannels. These currents were inhibited by extracellular Mg(2+). We conclude that extracellular divalent cations modulate intercellular Ca(2+) signaling in astrocytes by modulating the release of ATP, possibly via connexin hemichannels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.10257 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China. Electronic address:
After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:
Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.
Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).
Inflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!