The photoregulation of the catalytic activity of butyrylcholinesterase (BChE) was investigated by treating the enzyme with a newly developed carbamylating reagent, N-methyl-N-(2-nitrophenyl)carbamoyl chloride, which has proved to be an efficient photoremovable alcohol-protecting group. BChE was efficiently inhibited in a time- and concentration-dependent manner, and the enzyme could be protected against inhibition by active-site-specific ligands (that is, tacrine). The inactivation kinetics showed a biphasic character, which can be analyzed as the result of the existence of two conformational states in solution. Pseudo-irreversible inactivation of BChE, which results from catalytic serine carbamylation, was suggested by recovery of the enzyme activity after dilution and was demonstrated by X-ray crystallography. Remarkably, the 3D structure of the carbamylated BChE conjugate showed a nonambiguous carbamylation of the catalytic serine residue as the only chemical modification on the protein. The photoreversibility of the enzyme inactivation was analyzed by irradiating the inactivated enzyme at 365 nm and was shown to reach completion in some conditions. The efficient and specific "caging" of BChE, together with the availability of carbamylated BChE crystals, will offer a unique possibility to study the catalytic properties of this enzyme by kinetic crystallography after cryophotolytic uncaging of the enzyme conjugate crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200300571 | DOI Listing |
Biochemistry
January 2025
Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.
View Article and Find Full Text PDFVet Res
January 2025
Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States.
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
National Institute of Biological Sciences, Beijing 102206, China.
Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Medicine, McMaster University; Department of Biochemistry and Biomedical Sciences, McMaster University; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences.
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!