The Drosophila melanogaster transcription factor Lola (longitudinals lacking) is a pivotal regulator of neural wiring that sets the precise expression levels of proteins that execute specific axon guidance decisions. Lola has a zinc finger DNA binding domain and a BTB (for Broad-complex, Tramtrack and Bric a brac) dimerization motif. We now show that alternative splicing of the lola gene creates a family of 19 transcription factors. All lola isoforms share a common dimerization domain, but 17 have their own unique DNA-binding domains. Seven of these 17 isoforms are present in the distantly-related Dipteran Anopheles gambiae, suggesting that the properties of specific isoforms are likely to be critical to lola function. Analysis of the expression patterns of individual splice variants and of the phenotypes of mutants lacking single isoforms supports this idea and establishes that the alternative forms of lola are responsible for different functions of this gene. Thus, in this system, the alternative splicing of a key transcription factor helps to explain how a small genome encodes all the information that is necessary to specify the enormous diversity of axonal trajectories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn1105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!