Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells.

Mol Cell Biol

Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

Published: August 2003

Loss of p53 sensitizes to antimicrotubule agents in human tumor cells, but little is known about its role during mitosis. We have identified the Polo-like kinase family member serum inducible kinase (Snk/Plk2) as a novel p53 target gene. Snk/Plk2 mutagenesis demonstrated that its kinase activity is negatively regulated by its C terminus. Small interfering RNA (siRNA)-mediated Snk/Plk2 silencing in the presence of the mitotic poisons paclitaxel (Taxol) or nocodazole significantly increased apoptosis, similar to p53 mutations, which confer paclitaxel sensitivity. Furthermore, we have demonstrated that the apoptosis due to silencing of Snk/Plk2 in the face of spindle damage occurs in mitotic cells and not in cells that have progressed to a G(1)-like state without dividing. Since siRNA directed against Snk/Plk2 promoted death of paclitaxel-treated cells in mitosis, we envision a mitotic checkpoint wherein p53-dependent activation of Snk/Plk2 prevents mitotic catastrophe following spindle damage. Finally, these studies suggest that disruption of Snk/Plk2 may be of therapeutic value in sensitizing paclitaxel-resistant tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166320PMC
http://dx.doi.org/10.1128/MCB.23.16.5556-5571.2003DOI Listing

Publication Analysis

Top Keywords

novel p53
8
p53 target
8
target gene
8
snk/plk2
8
gene snk/plk2
8
mitotic catastrophe
8
spindle damage
8
mitotic
5
cells
5
silencing novel
4

Similar Publications

Background: Ependymoma with lipomatous differentiation is a rare type of ependymoma. The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of central nervous system tumors. ZFTA fusion-positive lipomatous ependymoma has not been reported to date.

View Article and Find Full Text PDF

Growth suppressing effect of extracts on cancerous cell line.

Cytotechnology

February 2025

Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000 Pakistan.

Homeostasis of tissues requires a complex balance between cell proliferation and cell death. The disruption of this balance leads to tumors. Cancer is a mortal disease that spreads all over the body, it is an irregular cell growth.

View Article and Find Full Text PDF

Rituximab combined with systemic chemotherapy significantly improves the rate of complete response in B-cell lymphomas. However, acquired rituximab resistance develops in most patients leading to relapse. The mechanisms underlying rituximab resistance are not well-understood.

View Article and Find Full Text PDF

Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored.

View Article and Find Full Text PDF

Targeting mutant p53: Evaluation of novel anti-p53 monoclonal antibodies as diagnostic tools.

Sci Rep

January 2025

Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.

About 50% of all cancers carry a mutation in p53 that impairs its tumor suppressor function. The p53 missense mutation p53 (p53 in mice) is a hotspot mutation in various cancer types. Therefore, monoclonal antibodies selectively targeting clinically relevant mutations like p53 could prove immensely value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!