AI Article Synopsis

Article Abstract

Nutrition support is recognized as an important cofactor in altering morbidity and mortality of hospitalized patients. Paramount in delivering proper nutrition support is the accurate determination of baseline metabolic and nutritional status, thus influencing necessary protein requirements. After nutritional intervention, routine laboratory monitoring is used to measure the efficacy and to reassess metabolic stress level. Accurate determination of nitrogen excretion (and nitrogen balance) remains the standard in prescribing and monitoring the protein and nutritional treatment regimen. This article examines nitrogen excretion determinations in the clinical setting, including proper collection techniques, laboratory measurements, and analyses and their effect upon nitrogen balance studies.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0115426592007005231DOI Listing

Publication Analysis

Top Keywords

nitrogen balance
12
balance studies
8
nutrition support
8
accurate determination
8
nitrogen excretion
8
nitrogen
5
studies clinical
4
clinical nutrition
4
nutrition nutrition
4
support recognized
4

Similar Publications

Controlled-release nitrogen combined with ordinary nitrogen fertilizer improved nitrogen uptake and productivity of winter wheat.

Front Plant Sci

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.

Background: Blending controlled-release nitrogen fertilizer (CRNF) with ordinary nitrogen fertilizer (ONF) is a strategic approach to improve winter wheat nutrient management. This blend provides nitrogen (N) to winter wheat in a balanced and consistent manner, ensuring long-term growth, reducing nutrient loss due to leaching or volatilization, and increasing N use efficiency (NUE).

Aims: CRNF aims to enhance N application suitability, optimizes soil nutrient dynamics, and its widespread use can boost crop NUE and yield.

View Article and Find Full Text PDF

Achieving sustainable development in livestock agriculture by balancing livestock production, reduction of greenhouse gas (GHG) emissions, and effective utilization of nitrogen nutrient has indeed been challenging. This study investigated the long-term effects of continuous cattle grazing, stocking rates, and fertilization regimens on methane (CH) emissions, soil microbial communities, and soil organic carbon (SOC) stocks in Bermudagrass pastures in East Texas, USA. Pastures were subjected to high or low stocking rates for over 50 years, with further subdivision based on fertilization: nitrogen-based fertilizer application or no fertilizer but with the growth of annual clover.

View Article and Find Full Text PDF

Sphagnum-dominated bogs are climatically impactful systems that exhibit two puzzling characteristics: CO:CH ratios are greater than those predicted by electron balance models and C decomposition rates are enigmatically slow. We hypothesized that Maillard reactions partially explain both phenomena by increasing apparent CO production via eliminative decarboxylation and sequestering bioavailable nitrogen (N). We tested this hypothesis using incubations of sterilized Maillard reactants, and live and sterilized bog peat.

View Article and Find Full Text PDF

Sudden biological contamination in Drinking Water Distribution System (DWDS) significantly threatens the safety of drinking water, with E. coli invasions being particularly hazardous to human health. Traditional disinfection methods (i.

View Article and Find Full Text PDF

Unveiling the role of saltmarshes as coastal potassium sinks: A perspective from porewater-derived potassium exchange.

Sci Total Environ

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China. Electronic address:

Saltmarshes serve as repositories for various metal species, primarily due to vegetation removal and mineralization processes. However, the significance of potassium (K), one of the three major nutrients (nitrogen, phosphorus, and K) essential for plant growth, has often been overlooked, particularly in the context of saltmarshes where the mechanisms of K transport via porewater exchange remain poorly understood. To address this knowledge gap, we conducted field observations and laboratory analysis, and developed a Rn mass balance model to quantify K fluxes via porewater exchange under physical, biological, and anthropogenic drivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!