Hip simulator tests of femoral balls of cobalt-chromium alloy or zirconia against acetabular cups of UHMW polyethylene were run with and without a coolant circulated inside the femoral balls. Without cooling, the wear of polyethylene against zirconia was about 48% lower than with cobalt-chromium alloy, but the steady-state temperature of the zirconia ball was higher (55 degrees C vs. 41 degrees C), and there was more precipitation of protein from the serum, which sometimes formed an adherent layer on the surface of the zirconia. Circulating coolant at 1-20 degrees C markedly reduced the bearing temperatures and the protein precipitation. With coolant at 4 degrees C, wear of the polyethylene against cobalt-chromium alloy was about 26% lower than against zirconia, but the macroscopic and microscopic appearance of the worn polyethylene surfaces were unlike that typically generated in vivo. With or without coolant, the morphology of the polyethylene wear debris was comparable to that generated in vivo, but the ratio of fibrillar to granular debris was higher at the reduced temperature. These results suggested that circulating coolant at an appropriate temperature could avoid overheating (due to non-stop running of the simulator), preventing excessive protein precipitation while providing wear surfaces and wear debris with morphologies closely comparable to those generated in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(03)00148-0DOI Listing

Publication Analysis

Top Keywords

cobalt-chromium alloy
12
generated vivo
12
uhmw polyethylene
8
femoral balls
8
wear polyethylene
8
circulating coolant
8
protein precipitation
8
wear debris
8
comparable generated
8
wear
6

Similar Publications

This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.

View Article and Find Full Text PDF

Evaluation of Retentive Forces in Three Types of Removable Partial Denture Framework Materials: An In Vitro Study.

Cureus

December 2024

Dentistry, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ.

Introduction The utilization of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in the production of polyetheretherketone (PEEK) and acetal frameworks enhances the precision and stability of partial denture frameworks. This study evaluates the retentive forces of CAD/CAM-fabricated PEEK, acetal, and cobalt-chromium (Co-Cr) frameworks in removable partial dentures (RPDs). Methods Forty-five frameworks were fabricated (15 each of PEEK, acetal, and Co-Cr) and tested for retentive forces using a universal testing machine at a crosshead speed of 5 mm/min.

View Article and Find Full Text PDF

Objectives: This study aimed to assess the vertical misfit at the implant-abutment interface in external and internal connections across various implant brands, comparing original milled titanium abutments with laser-sintered cobalt-chromium (Co-Cr) abutments.

Materials And Methods: A total of 160 implants from four different brands were utilized, with 80 featuring external connections (EC) and 80 internal connections (IC). Original milled titanium abutments (n = 160) and Co-Cr laser-sintered abutments (n = 160) were randomly attached to each connection type, following the manufacturer's recommended torque.

View Article and Find Full Text PDF

Background: Zygomatic implants are becoming an ideal treatment approach for implant-supported prosthesis treatment developed for the atrophic maxilla. This study aims to evaluate the amount and distribution of stress in implants and peri-implant bone using different implant-supported prosthesis configurations in Aramany Class I maxillary defects through 3-dimensional finite element analysis.

Methods: A 3-dimensional finite element model of the Aramany class I defect was created.

View Article and Find Full Text PDF

Background: The mechanical properties of framework materials significantly influence stress distribution and the long-term success of implant-supported prostheses. Although titanium, cobalt-chromium, zirconia, and polyether ether ketone (PEEK) are widely used, their biomechanical performance under dynamic loading conditions remains insufficiently investigated. This study aimed to evaluate the biomechanical behavior of four framework materials with different Young's modulus using dynamic finite element stress analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!