Noncanonical signaling by ionotropic kainate receptors.

Neuron

Instituto Cajal, CSIC, 28002 Madrid, Spain.

Published: July 2003

The potent neurotoxin kainate activates ion channel-forming receptors. However, it can also activate a G protein-coupled signaling pathway to inhibit transmitter release in central neurons. It remains unclear whether the same receptor complex is involved in both signaling activities. Here we show that in a population of dorsal root ganglion cells, exposure to kainate elicits a G protein-dependent increase in intracellular Ca2+. Furthermore, in these cells a brief exposure to kainate inhibited the K+-induced Ca2+ increase, a process that was sensitive to the G protein inhibitor Pertussis toxin and inhibitors of protein kinase C. This metabotropic action did not require ion channel activity and was not observed in neurons prepared from mice deficient for the ion channel-forming subunit GluR5. These results indicate that GluR5, an ion channel-forming subunit, signals through a second messenger cascade, inhibiting voltage-dependent Ca2+ channels. Thus, such a system represents a noncanonical signaling route of ion channel-forming receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(03)00436-7DOI Listing

Publication Analysis

Top Keywords

ion channel-forming
16
noncanonical signaling
8
channel-forming receptors
8
cells exposure
8
exposure kainate
8
channel-forming subunit
8
ion
5
signaling ionotropic
4
kainate
4
ionotropic kainate
4

Similar Publications

Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf)

February 2025

Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.

View Article and Find Full Text PDF

We investigated several small viral proteins that reside and function in cellular membranes. These proteins belong to the viroporin family because they assemble into ion-conducting oligomers. However, despite forming similar oligomeric structures with analogous functions, these proteins have diverse amino acid sequences.

View Article and Find Full Text PDF

Alphaviruses, a genus of vector-borne viruses in the family, encode a small ion-channel-forming protein, 6K, and its transframe variant (TF) during infections. Although 6K/TF have vital roles in glycoprotein transport, virus assembly, and budding, there is no mechanistic explanation for these functions. We investigated the distinct biochemical functionalities of 6K and TF from the mosquito-borne alphavirus, Chikungunya Virus.

View Article and Find Full Text PDF

Engineered Reactive Oxygen Species (ROS)-Responsive Artificial H/Cl Ion Channels for Targeted Cancer Treatment.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China.

Reactive oxygen species (ROS)-responsive ion channels regulate the ion flow across the membranes in response to alterations in the cellular redox state, playing a crucial role in cellular adaptation to oxidative stress. Despite their significance, replicating ROS-responsive functionality in artificial ion channels remains elusive. In this study, we introduce a novel class of artificial H/Cl ion channels activatable by elevated ROS levels in cancer cells.

View Article and Find Full Text PDF

Apoptosis-Inducing Activity of a 2-Hydroxyphenyl Benzamide-Based Self-Assembled Anion Channel.

Chemistry

January 2025

Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.

Despite the significant interest in designing artificial ion channels, there is limited availability of channel-forming molecules to tackle complex issues, especially in biological systems. Moreover, a major challenge is the scarcity of chloride transporters that can selectively induce toxicity in cancer cells while minimizing harm to normal healthy cells. This work reports a series of 2-hydroxyphenyl benzamide-based small molecules 1 a-1 c, which self-assemble to form barrel rosette-type artificial ion channels that adequately transport chloride ions across membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!