Herein we report that biomimetic analogues of cytochrome c oxidase (CcO) couple reduction of O(2) to oxidation of a single-electron carrier, Ru(NH(3))(6)(2+), under steady-state catalytic turnover. Higher Ru(II) concentrations favor the 4-electron vs 2-electron O(2) reduction pathway. Our data indicate that the capacity of electrode-adsorbed Fe-only porphyrins to catalyze reduction of O(2) to H(2)O is due to high availability of electrons and is eliminated under the biologically relevant slow electron delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic034488rDOI Listing

Publication Analysis

Top Keywords

electron availability
4
availability selectivity
4
reduction
4
selectivity reduction
4
reduction synthetic
4
synthetic monometallic
4
monometallic porphyrins
4
porphyrins report
4
report biomimetic
4
biomimetic analogues
4

Similar Publications

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Molecular Markers for the Phylogenetic Reconstruction of : A Quantitative Review.

Pathogens

January 2025

Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, BC, Mexico.

is the parasite responsible for Chagas disease, which has a significant amount of genetic diversification among the species complex. Many efforts are routinely made to characterize the genetic lineages of circulating in a particular geographic area. However, the genetic loci used to typify the genetic lineages of have not been consistent between studies.

View Article and Find Full Text PDF

Genetic Algorithm-Enhanced Direct Method in Protein Crystallography.

Molecules

January 2025

Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

Direct methods based on iterative projection algorithms can determine protein crystal structures directly from X-ray diffraction data without prior structural information. However, traditional direct methods often converge to local minima during electron density iteration, leading to reconstruction failure. Here, we present an enhanced direct method incorporating genetic algorithms for electron density modification in real space.

View Article and Find Full Text PDF

An Addendum to the Chemiosmotic Theory of Mitochondrial Activity: The Role of RNA as a Proton Sink.

Biomolecules

January 2025

School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

Mitochondrial ATP synthesis is driven by harnessing the electrochemical gradient of protons (proton motive force) across the mitochondrial inner membrane via the process of chemiosmosis. While there is consensus that the proton gradient is generated by components of the electron transport chain, the mechanism by which protons are supplied to ATP synthase remains controversial. As opposed to a global coupling model whereby protons diffuse into the intermembrane space, a localised coupling model predicts that protons remain closely associated with the lipid membrane prior to interaction with ATP synthase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!