It is now well documented that experimental autoimmune encephalomyelitis (EAE) can be effectively prevented by estrogen therapy. Previously, we identified a limited set of genes that were altered in spleens of mice protected from EAE by 17beta-estradiol (E2) treatment. As a continuation of these studies, we present here transcriptional changes in genes expressed in spinal cord tissue. The Affymetrix microarray system was used to screen more than 12,000 genes from E2-treated double transgenic (BV8S2 and AV4) female mice protected from EAE vs. control mice with severe EAE. We found that estrogen therapy had a profound inhibitory effect on the expressions of many immune-related genes in spinal cords. Estrogen significantly affected the transcription of 315 genes, 302 of which were down-regulated and only 13 that were up-regulated by > or = 2.4 fold. A number of genes encoding the histocompatibility complex, cytokines/receptors, chemokines, adhesion molecules, and signal transduction proteins were strongly down-regulated (> 20 fold) in estrogen-treated mice to levels similar to those of the spinal cord tissue from unmanipulated mice. The identification of genes with altered expression patterns in the spinal cords of estrogen-treated mice provides unique insight into the process that ultimately results in protection against EAE.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spinal cord
12
cord tissue
12
mice protected
12
17beta-estradiol treatment
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
estrogen therapy
8
genes altered
8
protected eae
8
spinal cords
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!