Hypertrophic olivary degeneration (HOD) is a rare type of neuronal degeneration involving the dento-rubro-olivary pathway and presents clinically as palatal tremor. We present a 48 year old male patient who developed Holmes' tremor and bilateral HOD five months after brainstem hemorrhage. The severe rest tremor was refractory to pharmacotherapy and botulinum toxin injections, but was markedly reduced after thalamotomy. Magnetic resonance imaging permitted visualization of HOD, which appeared as a characteristic high signal intensity in the inferior olivary nuclei on T2- and proton-density-weighted images. Enlargement of the inferior olivary nuclei was also noted. Palatal tremor was absent in that moment and appears about two months later. The delayed-onset between insult and tremor following structural lesions of the brain suggest that compensatory or secondary changes in nervous system function must contribute to tremor genesis. The literature and imaging findings of this uncommon condition are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0004-282x2003000300028DOI Listing

Publication Analysis

Top Keywords

palatal tremor
12
hypertrophic olivary
8
olivary degeneration
8
inferior olivary
8
olivary nuclei
8
tremor
7
holmes tremor
4
tremor association
4
association bilateral
4
bilateral hypertrophic
4

Similar Publications

The gene (OMIM: 608271) encodes the Microtubule-Actin Cross-Linking Factor 1 protein. Existing medical research shows that genetic mutations in the gene have been associated with neurodevelopmental and neurodegenerative disorders, with variants of unknown significance also linked to autism spectrum disorder (ASD). However, the number of reported autism disorder or epilepsy cases associated with mutations remains limited.

View Article and Find Full Text PDF

Segmental Brainstem Myoclonus (SBM) is a rare movement disorder characterized by rhythmic contractions of muscles innervated by brainstem segments. We report a 20-year-old patient with ADCK3-related spinocerebellar ataxia type 9 (SCAR9) presenting with sudden-onset myoclonic movements of the throat, tongue, and soft palate. Brain MRI showed stable findings, including dentate nucleus hyperintensities.

View Article and Find Full Text PDF

Ceroid lipofuscinosis type 2 (CLN2) is caused by biallelic pathogenic variants in the TPP1 gene, encoding lysosomal tripeptidyl peptidase 1 (TPP1). The classical late-infantile phenotype has an age of onset between 2 and 4 years and is characterized by psychomotor regression, myoclonus, ataxia, blindness, and shortened life expectancy. Vision loss occurs due to retinal degeneration, usually when severe neurological symptoms are already evident.

View Article and Find Full Text PDF

Myoclonus After Cardiac Arrest: Need for Standardization-A Systematic Review and Research Proposal on Terminology.

Crit Care Med

November 2024

Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria.

Objectives: Although myoclonus less than or equal to 72 hours after cardiac arrest (CA) is often viewed as a single entity, there is considerable heterogeneity in its clinical and electrophysiology characteristics, and its strength of association with outcome. We reviewed definitions, electroencephalogram, and outcome of myoclonus post-CA to assess the need for consensus and the potential role of electroencephalogram for further research.

Data Sources: PubMed, Embase, and Cochrane databases.

View Article and Find Full Text PDF

Opsoclonus myoclonus ataxia syndrome (OMAS) is a rare neuroinflammatory disorder that is typically associated with paraneoplastic and postinfectious processes. Opsoclonus myoclonus ataxia syndrome has not been previously reported in association with tuberculous meningitis (TBM). This report presents a unique case in which TBM manifested as OMAS, highlighting the complex interplay between tuberculosis and autoimmune neurological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!