Cell programs such as proliferation and differentiation involve the sequential activation and repression of gene expression. Vitamin D, via its active metabolite 1,25-dihydroxyvitamin D [1,25-(OH)2D3)], controls the proliferation and differentiation of a number of cell types, including keratinocytes, by directly regulating transcription. Two classes of coactivators, the vitamin D receptor (VDR)-interacting proteins (DRIP/mediator) and the p160 steroid receptor coactivator family (SRC/p160), control the actions of nuclear hormone receptors, including the VDR. However, the relationship between these two classes of coactivators is not clear. Using glutathione-S-transferase-VDR affinity beads, we have identified the DRIP/mediator complex as the major VDR binding complex in proliferating keratinocytes. After the cells differentiated, members of the SRC/p160 family were identified in the complex but not major DRIP subunits. Both DRIP and SRC proteins were expressed in keratinocytes. DRIP205 expression decreased during differentiation, although SRC-3 levels increased. Both DRIP205 and SRC-3 potentiated vitamin D-induced transcription in proliferating cells, but during differentiation, DRIP205 was no longer effective. These results indicate that these two distinct coactivators are sequentially involved in vitamin D regulation of gene transcription during keratinocyte differentiation, suggesting that these coactivators are part of the means by which the temporal sequence of gene expression is regulated during the differentiation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2003-0063 | DOI Listing |
Psychol Med
January 2025
Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
Background: Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.
Methods: After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.
Can J Exp Psychol
January 2025
Department of Psychology, University at Buffalo.
Working memory is associated with general intelligence and is crucial for performing complex cognitive tasks. Neuroimaging investigations have recognized that working memory is supported by a distribution of activity in regions across the entire brain. Identification of these regions has come primarily from general linear model analyses of statistical parametric maps to reveal brain regions whose activation is linearly related to working memory task conditions.
View Article and Find Full Text PDFNat Commun
January 2025
IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Equipe Labélisée Ligue contre le Cancer, Strasbourg, France.
The plasticity of cancer cells facilitates their ability to adopt heterogeneous differentiation states, posing a significant challenge to therapeutic interventions. Specific gene expression programs, driven in part by super-enhancers (SEs), underlie cancer cell states. Here we successfully inhibit SE-driven transcription in phenotypically distinct metastatic melanoma cells using next-generation synthetic ecteinascidins.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
Co-activation of distinct brain areas provides a valuable measure of functional interaction, or connectivity, between them. One well-validated way to investigate the co-activation patterns of a precise area is meta-analytic connectivity modeling (MACM), which performs a seed-based meta-analysis on task-based functional magnetic resonance imaging (task-fMRI) data. While MACM stands as a powerful automated tool for constructing robust models of whole-brain human functional connectivity, its inherent limitation lies in its inability to capture the distinct interrelationships among multiple brain regions.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA.
Cardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!