The cysB gene product is a LysR-type regulatory protein required for expression of the cys regulon. cysB mutants of Escherichia coli and Salmonella, along with being auxotrophs for the cysteine, exhibit increased resistance to the antibiotics novobiocin (Nov) and mecillinam. In this work, by using lambdaplacMu9 insertions creating random lacZ fusions, we identify a gene, hslJ, whose expression appeared to be increased in cysB mutants and needed for Nov resistance. Measurements of the HSLJ::lacZ gene fusion expression demonstrated that the hslJ gene is negatively regulated by CysB. In addition we observe the negative autogenous control of HslJ. When the control imposed by CysB is lifted in the cysB mutant, the elevation of Nov resistance can be achieved only in the presence of wild-type hslJ allele. A double cysB hslJ mutant restores the sensitivity to Nov. Overexpression of the wild-type HslJ protein either in a cysB(+) or a cysB(-) background increases the level of Nov resistance indicating that hslJ product is indeed involved in accomplishing this phenotype. The HSLJ::OmegaKan allele encodes the C-terminaly truncated mutant protein HslJ Q121Ter which is not functional in achieving the Nov resistance but when overexpressed induces the psp operon. Finally, we found that inactivation of hslJ does not affect the increased resistance to mecillinam in cysB mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0378-1097(03)00441-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!