A probe-type oxygen sensor was developed utilizing a radioluminescent (RL)-based light source and a ruthenium-based sensing chemistry for monitoring the dissolved oxygen (DO) concentration in a modified version of the NASA-designed high aspect ratio vessel (HARV), a batch rotating wall vessel. This sensor provided the means to monitor the DO concentration in the HARV without influencing the flow pattern, thereby retaining the low shear HARV environment conducive to the formation of 3-dimensional cell aggregates. This sensor lost significant signal as a result of exposure to the first three autoclave cycles, but only minimal change in signal was observed following exposure to subsequent autoclave cycles. A new calibration model requiring only one fitted parameter was developed that accurately fit data over the entire range from 0% to 100% oxygen saturation. The ability for DO concentration control within the vessel was demonstrated by using this sensor to monitor the DO concentration inside the HARV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp0257574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!