Molecular detection of the G(-248)A BAX promoter nucleotide change in B cell chronic lymphocytic leukaemia.

Mol Pathol

Department of Pathology, Royal University Hospital and College of Medicine, University of Saskatchewan, Saskatoon SK S7N 0W8, Saskatchewan, Canada.

Published: August 2003

Background: A novel single nucleotide polymorphism (SNP), G(-248)A, in the 5' untranslated region of the BAX promoter and its association with reduced protein expression, progression beyond Rai stage 0, and treatment resistance in chronic lymphocytic leukaemia (CLL) has been reported previously.

Aim: To develop a restriction enzyme analysis (REA) based method for routine detection of BAX promoter SNP in a clinical laboratory.

Methods: The BAX promoter was analysed in duplicate by REA and sequencing in 90 samples (from 45 patients with CLL, 43 controls, and two cell lines). The promoter region was amplified, digested with restriction endonucleases (Aci I and Tau I), and separated by gel electrophoresis.

Results: After digestion, the normal GG genotype samples produced three distinct bands. The homozygous AA replacement abolished the cleavage site, resulting in a single band. Although the heterozygous samples produced three bands, the two smaller visible bands were reduced in intensity (> 50%). The test characteristics of Aci I REA were better than those of Tau I REA, in terms of sensitivity (100% v 77.8%), specificity (98.6% v 92.3%), positive predictive value (95.03% v 87.4%), and negative predictive value (100% v 85.83%).

Conclusions: REA using Aci I is a highly sensitive and specific method for detecting the BAX G(-248)A SNP in CLL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187322PMC
http://dx.doi.org/10.1136/mp.56.4.205DOI Listing

Publication Analysis

Top Keywords

bax promoter
16
chronic lymphocytic
8
lymphocytic leukaemia
8
samples produced
8
produced three
8
bax
5
promoter
5
rea
5
molecular detection
4
detection g-248a
4

Similar Publications

Oncolytic viral-based therapy and specific gene expression by promoters are modern targeted oncotherapy approaches that have gained significant attention in recent years. In this study, both strategies were combined by designing cancer-specific activation of vesicular stomatitis virus matrix expression under the survivin promoter. The matrix sequence was cloned downstream of the survivin promoter (pM).

View Article and Find Full Text PDF

Background: Paired box 9 (PAX9) has been linked to several human disorders; however, its relevance in Head And Neck Squamous Cell Carcinoma (HNSCC) remains unknown.

Methods: The difference in PAX9 mRNA expression in pan-cancer was analyzed utilizing The Cancer Genome Atlas (TCGA), and the level of PAX9 protein expression across various types of cancer was assessed utilizing the Human Protein Atlas (HPA) and UALCAN databases, as well as the cellular localization of PAX9. UALCAN studied the methylation levels of PAX9 in pan-cancer.

View Article and Find Full Text PDF

Acetylation of E2F1 at K125 facilitates cell apoptosis under serum stress.

Transl Oncol

December 2024

Department of General Surgery, Sanmen People's Hospital, Sanmen 317100, China. Electronic address:

Article Synopsis
  • E2F1 is a vital transcription factor involved in regulating the cell cycle and is often found at high levels in cancer cells.
  • Recent research indicates that E2F1 can also trigger apoptosis (cell death) under stress conditions, posing a dual role in cell survival and death.
  • This study reveals that acetylation of E2F1 at K125 during serum stress enhances its ability to promote the expression of Fas and BAX, leading to the activation of caspase-3 and apoptosis in liver cancer cells.
View Article and Find Full Text PDF

FXR-regulated COX6A2 triggers mitochondrial apoptosis of pancreatic β-cell in type 2 diabetes.

Cell Death Dis

December 2024

Diabetes Institute, the Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis ZDSYS, Shenzhen University Medical School, Shenzhen, PR China.

Pancreatic β-cell apoptosis plays a crucial role in the development of type 2 diabetes. Cytochrome c oxidase subunit 6A2 (COX6A2) and Farnesoid X Receptor (FXR) have been identified in pancreatic β-cells, however, whether they are involved in β-cell apoptosis is unclear. Here, we sought to investigate the role of FXR-regulated COX6A2 in diabetic β-cell apoptosis.

View Article and Find Full Text PDF

METTL3/YTHDF1-mediated mA modification stabilizes USP12 to deubiquitinate FOXO3 and promote apoptosis in sepsis-induced myocardial dysfunction.

Mol Immunol

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China. Electronic address:

Sepsis-induced myocardial dysfunction (SIMD) is a life-threatening complication primarily driven by inflammation, yet its molecular mechanisms remain unclear. In this study, we identified significant upregulation of the mA methyltransferase METTL3 (methyltransferase-like 3), the mA reader protein YTHDF1 (YTH N6-methyladenosine RNA binding protein 1), as well as increased expression levels of USP12 (ubiquitin-specific peptidase 12), FOXO3 (forkhead box O3), and key molecules in the intrinsic apoptotic pathway, PUMA (p53 upregulated modulator of apoptosis) and BAX (Bcl-2-associated X), through proteomic profiling in an LPS (Lipopolysaccharide)-induced SIMD mouse model. In vitro and in vivo experiments demonstrated that METTL3 and YTHDF1 regulated USP12 mRNA expression and stability through mA modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!