The objective of this study was to elucidate the role of a [Ca2+]i rise and protein kinase C (PKC) activation on decreases of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase activity during parthenogenetic activation of porcine oocytes. In oocytes treated with 50 microM Ca2+ ionophore, degradations of both p34(cdc2) kinase and MAP kinase activity were observed and half of these oocytes formed pronuclei. However, a supplement of PKC inhibitor, calphostin C, after 50 microM Ca2+ ionophore treatment, was sufficient to inhibit the inactivation of MAP kinase and pronuclear formation in the oocytes. These results showed that PKC played an important role in Ca2+-induced oocyte activation. On the other hand, 10 microM Ca2+ ionophore treatment could not affect the MAP kinase activity but induced a transient decrease of p34(cdc2) kinase activity, which resulted in recovery of p34(cdc2) kinase activity and progression to meiotic metaphase III stage. To investigate the effects of PKC activator on oocytes treated with 10 microM Ca2+ ionophore, matured oocytes were cultured with phorbol 12-myriatate 13-acetate (PMA), after 10 microM Ca2+ ionophore treatment. The additional treatment suppressed the recovery of p34(cdc2) kinase activity and rapidly induced a decrease of MAP kinase activity, and these low activities were maintained until 12-h cultivation. As a result, a significantly higher percentage of these oocytes (67%) had pronuclei at 12-h cultivation. Moreover, PMA treatment without Ca2+ ionophore treatment effectively led to a decrease of MAP kinase activity in a dose-dependent manner but not p34(cdc2) kinase activity in matured porcine oocytes. In conclusion, the parthenogenetic activation of porcine oocytes was mediated by the inactivation of p34(cdc2) kinase via a calcium-dependent pathway and thereafter by the inactivation of MAP kinase via a PKC-dependent pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.103.018036 | DOI Listing |
J Trace Elem Med Biol
January 2025
Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.
Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.
Pain
October 2024
Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California.
High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Oncology, Peking University First Hospital, Taiyuan Hospital, Taiyuan, Shanxi, China.
This work established the cytotoxic, antioxidant and anticancer effects of copper nanoparticles (CuNPs) manufactured with fennel extract, especially on non-small cell lung cancer (NSCLC) as well. CuNPs caused cytotoxicity in a dose-dependent manner for two NSCLC cell lines, A549 and H1650. At 100 μg/ml, CuNPs reduced cell viability to 70% in A549 cells and 65% in H1650 cells.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, United States of America.
Unraveling the metabolism of Treponema pallidum is a key component to understanding the pathogenesis of the human disease that it causes, syphilis. For decades, it was assumed that glucose was the sole carbon/energy source for this parasitic spirochete. But the lack of citric-acid-cycle enzymes suggested that alternative sources could be utilized, especially in microaerophilic host environments where glycolysis should not be robust.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!