The peptide hormone ghrelin is known to be present within stomach and, to a lesser extent, elsewhere in gut. Although reports suggest that gastric function may be modulated by ghrelin acting via the vagus nerve, the gastrointestinal distribution and functions of its receptor, the growth hormone secretagogue receptor (GHS-R), are not clear and may show signs of species-dependency. This study sought to determine the cellular localisation and distribution of GHS-R-immunoreactivity (-Ir) using immunofluorescent histochemistry and explore the function of ghrelin in both human and rat isolated gastric and/or colonic circular muscle preparations in which nerve-mediated responses were evoked by electrical field stimulation. The expression of GHS-R-Ir differed to a greater extent between species than between gut regions of the same species. Both the human and rat gastric and colonic preparations (n=3 each) expressed GHS-R-Ir within neuronal cell bodies and fibres, cells associated with gastric glands and putative entero-endocrine and/or mast cells. Smooth muscle cells and epithelia were devoid of GHS-R-Ir and only rat preparations expressed GHS-R-Ir on nerve fibres associated with the muscle layers. GHS-R-Ir was fully competed in all cases in pre-adsorption studies and antiserum specificity was confirmed using a cell line transiently expressing the rat GHS-R. In rat isolated forestomach circular muscle, ghrelin 0.1-10 microM had no effect on smooth muscle tension but concentration-dependently facilitated the amplitude of contractions evoked by excitatory nerve stimulation (n=4-7; P<0.05 for each concentration versus vehicle; n=18). When examined under similar conditions, in both rat distal colon (n=4-6, P>0.05 each) and human ascending (n=3) and sigmoid (n=1) colon, these concentrations of ghrelin were without effect (P>0.05 each). The data suggest that ghrelin has the potential to profoundly affect gastrointestinal functions in both species and at least one of these functions is to exert a gastric prokinetic activity. Moreover, we suggest that this activity of ghrelin is mediated via the enteric nervous system, in addition to known vagus nerve-dependent mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(03)00327-0 | DOI Listing |
Arch Insect Biochem Physiol
January 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
The activin cascade is activated when a pair of extracellular ligand (Myoglianin, Myo; Activin β, Actβ; Dawdle, Daw) binds to two pairs of transforming growth factor β (TGF) serine-threonine receptor kinases, TGF-β type I (Baboon, Babo) and II receptors. However, the roles of activin way have not well been explored in non-Drosophilid insects. In the present paper, we compared the functions of Activin β (Actβ) ligand and receptor isoform BaboB in post-embryonic development in a defoliating ladybird Henosepilachna vigintioctopunctata.
View Article and Find Full Text PDFAndrology
January 2025
Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
The hypothalamic-pituitary-gonadal axis is regulated by the gonadotropin-releasing hormone pulse generator in the hypothalamus. This is comprised of neurons that secrete kisspeptin in a pulsatile manner to stimulate the release of GnRH, and, in turn, downstream gonadotropins from the pituitary gland, and subsequently sex steroids and gametogenesis from the gonads. Many reproductive disorders in both males and females are characterized by hypothalamic dysfunction, including functional disorders (such as age-related hypogonadism, obesity-related secondary hypogonadism, hyperprolactinemia, functional hypothalamic amenorrhea and polycystic ovary syndrome), structural pathologies (such as craniopharyngiomas or radiation or surgery-related hypothalamic dysfunction), and pubertal disorders (constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism).
View Article and Find Full Text PDFRev Neurosci
January 2025
School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China.
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland.
Background: Loeys-Dietz syndrome (LDS) is a clinically and genetically heterogeneous, autosomal dominant aortic aneurysm syndrome with widespread systemic involvement. We present the case of a 16.5-year-old girl with LDS type 2 (LDS2) caused by a heterozygous pathogenic variant, c.
View Article and Find Full Text PDFUnlabelled: Growth hormone (GH) plays a crucial role in various physiological functions, with its secretion tightly regulated by complex endocrine mechanisms. Pathological conditions such as acromegaly or pituitary tumors result in elevated circulating GH levels, which have been implicated in a spectrum of metabolic disorders, potentially by regulating liver metabolism. In this study, we focused on the liver, a key organ in metabolic regulation and a primary target of GH, to investigate the impact of high circulating GH on liver metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!