Preparation of antibacterial silver-doped silica glass microspheres.

J Biomed Mater Res A

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

Published: August 2003

Various types of inorganic substances doped with silver ions have been developed as antibacterial materials, and some have already been commercialized. Colorless and chemically durable materials that slowly release silver ions are, however, still need to be developed. The present authors have previously shown that when a silica glass doped with silver and aluminium ions is prepared using the sol-gel method, the resultant product is colorless, chemically durable, and slowly releases silver ions into water over a long period. The doped silica glass takes a form of microspheres <1 microm in diameter, it is easily mixed with organic polymers, and the mixture can be formed into a thin film or fine fibers, etc. We report on the preparation of silver doped silica glass microspheres having a diameter =1 microm, using the sol-gel method. Initially, tetraethoxysilane was partially prehydrolyzed by water in ethanol, and then aluminium triisopropoxide was added to the solution to form Si-O-Al bonds. Finally, an ammonia solution containing silver nitrate was added to form silica microspheres doped with silver ion together with aluminium ions. The results show monodispersed microspheres 0.4-0.6 microm in diameter were obtained with nominal compositions of Si/Al/Ag = 1/0.01-0.03/0.003-0.03, with a molar ratio of Al/Ag = 1-3.3. The microspheres were colorless, showed a high chemical durability, and slowly released silver ions into water at 37 degrees C. Microspheres with the composition Si/Al/Ag = 1/0.01/0.01 showed excellent antibacterial activity against Escherichia coli. The minimum inhibitory concentration (MIC) of the microspheres was 400, which is less than the MIC value (800) of commercial antibacterial materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.10547DOI Listing

Publication Analysis

Top Keywords

silica glass
12
silver ions
12
doped silver
8
ions developed
8
colorless chemically
8
chemically durable
8
preparation antibacterial
4
antibacterial silver-doped
4
silver-doped silica
4
glass microspheres
4

Similar Publications

Hydroxyapatite (HAP) is a well-known medically renowned bioactive material known for its excellent biocompatibility and mechanical stability, but it lacks fast bioactivity. The restricted release of ions from hydroxyapatite encourages the search for a faster bioactive material that could replicate other properties of HAP. A new sol-gel-mediated potentially bioactive glass material that could mimic the structure of HAP but can surpass the performance of HAP bioactively has been formulated in this study.

View Article and Find Full Text PDF

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

Insights into Calcium Phosphate Formation Induced by the Dissolution of 45S5 Bioactive Glass.

ACS Biomater Sci Eng

January 2025

CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.

Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.

View Article and Find Full Text PDF

Water participates in countless processes on Earth, and the properties of mineral surfaces can be drastically changed in the presence of water. For example, the fracture toughness of silica glass is reduced by 25% for water-filled cracks than for dry cracks [ , , 9341-9354]. An accurate description of water is therefore essential for modeling the behavior of minerals in aqueous environments and, in particular, for modeling dynamic processes such as fracture, where the mechanical response of water may play an important role.

View Article and Find Full Text PDF

A highly visible-transparent thermochromic smart window with broadband infrared modulation for all-season energy savings.

Natl Sci Rev

February 2025

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Thermochromic smart windows effectively reduce the energy consumption for buildings through passive light modulation including the transmission of visible (T) and near-infrared (T) light, and the emissivity of mid-infrared (ε) light in response to ambient temperature change. However, thermochromic windows that maintain high T while modulating T and ε simultaneously are highly desirable but still challenging. Here, we develop a thermochromic smart window based on a two-way shape memory polymer to enable reversible transformation and achieve T modulation of 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!