Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about an involvement of this structure in more complex aversive learning, such as acquisition of an active avoidance reaction. In the present study, rats with a pretraining injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), into the basolateral amygdala (BLA) were found to be impaired in two-way active avoidance learning. During multitrial training in a shuttle box, the APV-injected rats were not different from the controls in sensitivity to shock or in acquisition of freezing to contextual cues. However, APV injection led to impaired retention of contextual fear when tested 48 h later, along with an attenuation of c-Fos expression in the amygdala. These results are consistent with the role of NMDA receptors of the BLA in long-term memory of fear, previously documented in Pavlovian conditioning paradigms. The APV-induced impairment in the active avoidance learning coincided with deficits in directionality of the escape reaction and in attention to conditioned stimuli. These data indicate that normal functioning of NMDA receptors in the basolateral amygdala is required during acquisition of adaptive instrumental responses in a shuttle box but is not necessary for acquisition of short-term contextual fear in this situation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC202320PMC
http://dx.doi.org/10.1101/lm.58803DOI Listing

Publication Analysis

Top Keywords

basolateral amygdala
12
active avoidance
12
nmda receptor
8
receptor antagonist
8
apv basolateral
8
avoidance reaction
8
avoidance learning
8
shuttle box
8
contextual fear
8
nmda receptors
8

Similar Publications

Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.

View Article and Find Full Text PDF

Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.

Neuron

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:

Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance.

View Article and Find Full Text PDF

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Inhibition of the basolateral amygdala to prelimbic cortex pathway enhances risk-taking during risky decision-making shock task in rats.

Physiol Behav

January 2025

Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China. Electronic address:

Many animal studies have explored decision-making under risk and punishment, particularly regarding potential rewards, but less focus has been placed on contexts involving net losses. Understanding decision-making under net loss conditions can shed light on the neural mechanisms involved. The basolateral amygdala to prelimbic cortex (BLA→PL) pathway is crucial for risky decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!